A SPECTROSCOPIC SURVEY OF 51 PLANETARY NEBULAE

L. H. ALLER AND C. D. KEYES

Department of Astronomy, University of California, Los Angeles Received 1987 February 13; accepted 1987 May 21

ABSTRACT

We present spectroscopic data for some 51 additional planetary nebulae (PNs) observed with the image-tube scanner (ITS) on the Shane 3 m telescope at Lick Observatory. Likely sources of error are discussed, including the influence of a possible nonlinearity of the ITS detector as mentioned by Peimbert and his associates. Plasma diagnostics are obtained and used to compute ionic abundances from the observed line intensities. Elemental abundances for 48 of these objects are then derived with the aid of ionization correction factors supplied from theoretical models. These data are then supplemented with published material to provide a sample of more than 100 PNs.

Abundance patterns of C, N, and to some extent O show a considerable spread owing to differing nuclear process rates in progenitor stars. The mean N and C abundances exceed their solar value, while the mean O abundance is smaller, a result in accord with the findings of previous investigators. The mean Ne abundance seems to agree with the solar value, whereas those of S, Cl, and Ar may be smaller in the PNs. If agreement between nebular and solar O abundances is forced by adopting appropriate T_{ε} fluctuations as suggested by Peimbert, Rubin, Dinerstein, and others, the nebular abundances of S, Cl, and Ar will fall closer to the solar value, but that of Ne will be too large.

Subject headings: nebulae: abundances — nebulae: planetary

I. INTRODUCTION

The importance of planetary nebulae (PNs) as suppliers of material to the interstellar medium is becoming increasingly appreciated (see, e.g., Kaler 1983a, 1985b, and references cited therein). Of particular interest is the fraction of new products of nucleogenesis. Stars of low mass contribute only small quantities of newly manufactured nuclides, while those of larger mass may contribute substantial amounts of elements such as C and N. See, e.g., Peimbert (1978, 1983). In certain PNs such as NGC 6537, there is some evidence that O is actually destroyed (Feibelman, Aller, and Keyes 1985), although the "oxygen deficiency" noted by many observers may be partially an artifact of neglecting T_{ϵ} fluctuations (Peimbert 1967; Rubin 1969; Dinerstein, Lester, and Werner 1985; Zuckerman and Aller 1986). It is generally agreed that Ne and heavier elements such as S, Cl, and Ar are not manufactured in the progenitors of PNs. Presumably, the proportions of these elements with respect to H should remain essentially unchanged. That is, the Ne/H, S/H, Cl/H, and Ar/H ratios should be the values appropriate to the interstellar medium (ISM) from which the progenitor stars were formed. An intrinsic spread in these ratios must arise from the fact that the observed population of PNs includes objects of greatly differing masses, ages, and points of origin in the Galaxy. Unfortunately, except for Ne, we appear to be bedeviled by inadequacies in the atomic parameters, A-values, and collision strengths, Ω , among these heavier elements (see, e.g., a discussion by Czyzak, Keyes, and Aller 1986). Uncertainties in T_e and ionization correction factors (ICFs) produce a further dispersion of results.

The objective of this program is to extend the previous survey (Aller and Czyzak 1983, hereafter AC 83) to mostly fainter objects, many in the Galactic central bulge, and others distributed along the Milky Way and in the anticenter region. We determine nebular diagnostics (N_e, T_e) and ionic concentrations. Ultimately with the aid of models, which yield the ICFs, we derive the elemental abundances. We describe the abundance pattern or distribution for each element with the aid of appropriate block graphs. In this paper we discuss only the total sample. Subsequent papers will treat the abundance data with respect to topics such as dependence of compositions on distance from the Galactic center, on population type, on excess nitrogen content, and on the mass of progenitor stars (as far as this quantity can be estimated).

II. SELECTION OF OBJECTS

The observing list was compiled from the Perek-Kohoutek catalog (1967), from objects observed with the VLA by the Groningen workers (Gathier et al. 1983) and from the Acker et al. catalog (1982). The list also includes a number of relatively bright objects mostly described in Curtis (1918). A special effort was made to select objects at presumably great distances. Alas, many of these nebulae are severely dimmed by interstellar extinction.

Table 1 lists the objects observed in the present program. Column (1) gives the name of or usual designation of the nebula; column (2) gives its designation in the catalog of Perek and Kohoutek (1967); columns (3) and (4) give the position for the epoch 1950. Adopted values of the logarith-

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
Name of Object	PN	α(1950)	δ(1950)	log F(Hβ)	Diameter	Ex	PNN	Sp	С	v_{LSR}	Tε/10 ⁴	$N_{\varepsilon}/10^3$	Table	References
M1-4	147-2°1	3 37 59.1	+52 07 26	-12.14	4"	6	16.7V	Of	1.86	- 34.1	1.16	4.0	2В	1,7,11,12,13,15,16,23,26,30
M2-2	147+4°1	4 09 10.2	+56 49 20	-12.22	12"	6		cs	2.0	- 7.4	1.20	5.0	2A	1,3,6,12,16,23,24,30
к3-67	165-6°1	4 36 27.5	+36 39 52		15"	4.5		c₩	1.38	- 84.2	1.35	3.0	28	2,3,7
к3-68	178-2°1	5 28 25.0	+28 56 31			10		c₩	1.36	54.7	1.96	0.5	2 F	2,3
M2-6	353+6°2	17 01 06	-30 49 21		0.9	4.5		CW	1.3	- 79.3	(0.94)	9.2	2C	3,8
M4-3	357+7°1	17 07 34.7	-27 05 03		0.75	4		c₩	1.8	166.5	0.93	11	2C	3,8
M2-10	354+4°1	17 10 53.5	-31 16 16		1.2	3		cw	1.65	- 65.6	(0.68)	(3.)	2C	3,8,16
H1-18	357+2°4	17 26 31.6	-29 3 0 3 2		0.85	4.5			2.92	-193.9	1.0	7.5	2C	8
NGC 6369	2+5°1	17 26 18	-24 43 12	-11.34	29"	5	16.6	WR	2.23	- 90.0	1.2	6.0	2A	1,2,5,7,9,15,18,19,20,21,25
H1-23	357+1°1	17 29 35	-29 58 09		1.3	4		Of?	2.85	- 62.0	0.95	2.3	2C	1,8
Hubble 4	3+2°1	17 38 48	-29 40 12	-11.94	6"	7	16.16B	WC	1.94	- 51.1	1.05	5.6	2E	1,5,7,11,15,18,23,28
H2-18	6+4°1	17 40 29.3	-21 08 33		1.8"	5.5		Of?	1.83	-103.5	1.2	7.5	2C	1,8
M3-15	6+4°2	17 42 32.4	-20 56 52		3.0	5		WC	2.68	112.8	1.12	2.5	2C	1,3,8
Hubble 5	359-0°1	17 44 44.5	-24 58 53	-11.50	20	9		cw	2.28	- 17.9	1.25	5.5	2F	1,2,7,15,18,25
NGC 6439	11+5°1	17 45 26.3	-16 27 47	-11.68	6"	7			1.11	- 80.1	1.09	4.0	2E	1,2,7,11,15,18,20,21,25,29
Cn 2-1	356-4°1	17 51 13.6	-34 21 50	-11.63	2.5	5.6		Of	1.09	-262	0.79	4.0	2В	3,7,29
Hubble 6	7+1°1	17 52 06.7	-21 44 12	-11.75	6"	6.5	16.38B	CW	2.40	21.7	1.10	6.0	2E	1,5,7,11,15,18,22
M2-21	0-2°4	17 54 57.5	-23 44 06	-12.50	<5"	6.5		c₩	1.60	-123	1.26	2.8	2E	18,29
M3-20	2-2°2	17 56 09.7	-21 13 35	-12.40	<5"	5		0f	1.91	65.7	1.04	4.5	2A	16,18,29
M2-23	2-2°4	17 58 33.7	-28 25 44	-11.57	0.40	5		Of	1.36	234.7	1.26	3.0	2C	8,18
IC 4673	3-2°3	18 00 10.4	-27 06 32	-11.81	17"	8		CW	1.20	- 4.9	1.10	1.3	2F	1,7,15,16,18,29
M1-35	3-2°1	18 00 31.9	-26 43 66	-12.85		4.5			2.2	93.1	1.05	5.5	2A	16,28
M1-38	2-3°5	18 02 58.5	-26 40 50		2.0	1			1.80	- 59.5	i		2A	8,28
M1-42	2-4°2	18 07 04.3	-28 59 40	-11.62	9"	6		cs	0.60	- 33.3	0.83	1.5	2E	1,7,15,16,29
H1-59		18 08 20.3	-27 47	-12.54	6"	8		c₩	0.90		1.2	0.8	2F	16,29
M2-30		18 09 24.9	-27 59 01	-11.95	5"	7		cw	0.77	184.7	1.11	8.0	2F	18,29
NGC 6567	11-0°2	18 10 48	-19 05	-10.89	11"	5.5	15.0	WC	0.72	132.9	1.06	16.6	2В	1,4,5,7,9,10,13,15,16,17,18, 19,20,21,23,25,29
M2-33	2-6°1	18 11 53.9	-30 16 33		2.0	4		Of	0.75	-101.9	(0.85)	(2.3)	2C	1,8
M1-44	4-4°2	18 13 09.5	-27 05 37	-12.00		2		wc	1.17	- 64	0.66	1.2	2A	1,16,29
NGC 6578	10-1°1	18 13 18	-20 28	-11.00	8.5	5	14.78B	Of	1.76	17.3	0.85	3.8	2D	1,7,9,12,15,16,18,19,20,21,25,
Cn 3-1	38+12°1	18 15 12.24	10 07 51.	8 -11.05	5"	2		Of	0.79	22.5	See Text	4.0	2В	1,2,3,4,5,7,11,13,17,18,25
HI-65	7- 4°1	18 17 05.07	-24 16 26.3	3	1.3	l		cw	0.83				2C	3,8
NGC 6620	5- 6°1	18 19 46.8	-26 50 58	-11.72	5"	6.5		cs	0 ?	83.6	0.99	1.85	2E	1,3,5,7,11,15,18,19,20,22,29
NGC 6629	9- 5°1	18 22 40	-23 13 57	-10.84	16"	4	13.0B	0f	0.96	26.6	0.89	1.26	2D	1,2,5,7,9,15,16,18,19,20,21, 23,25,26,29
IC 4732	10- 6°1	18 30 53.2	-22 41 02.8	8 -11.52	5"	5	>16 ?	Of	0.4	-13.3	1.30	12.5	2В	1,3,7,11,15,16,18,19,20,26,29
NGC 6781	41- 2°1	19 16 02	+06 25 48	-11.19	106"	4	15.9B		1.0	21.5	1.07	0.37	2D	1,5,7,15,16,18,19,20,23,25
NGC 6804	45- 4°1	19 29 12.0	+09 07 13	-11.51	63"	9	14.4B		0.9	5.3	1.29	1:	2C	1,2,5,7,12,13,15,17,18,20,21,
														23,25,30

TABLE 1—Continued

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
Name of Object	PK	α(1950)	δ(1950)	log F(Hβ)	Diameter	Ex	PNN	Sp	С	V _{LSR}	Tε/10 ⁴	N _ε /10 ³	Table	References
NGC 6807	42- 6°1	19 32 03.4	+05 34 30.	3 -11.46	2"	5	>15.5B	Of	0.64	-51	1.12	4.0	2B	1,5,7,11,15,16,18,19,20,22, 26,30
Me 1-1	52- 2°2	19 36 53.5	+15 49 52	-11.52	1.5	5		Of	0.9	11.7	1.0	12	2B	1,5,7,15,16,23,24
NGC 6833	82+11°1	19 48 20.9	+48 -50 01	-11.22	2"	5	13.8B	Of	0.5	-91.6	1.42	20	2B	1,7,4,15,11,16,23,22,26,20,19
MI-75	68- 0°1	20 02.8	+31 19		20"	9			2.4	8.5	1.2	3.4	2F	1,7,15,16
NGC 6881	74+29°1	20 09 01.6	+37 15 44	-12.26	4"		16.8B	CW	2.0	2.9	1.27	10	2F	1,5,7,11,15,16,20,22,23,26,30
NGC 6879	57- 8°1	20 09 10.1	+16 46 22	-11.57	5"	5.5		Of	0.61	25.7	1.2	5.6	2 A	1,7,5,15,16,23,27,29,30
NGC 6891	54-12°1	20 12 47.7	+12 32 59	-10.67	12"	5	12.3	Of	0.44	58.6	0.93	5.0	2D	1,2,5,7,14,15,16,17,18,19,20, 23,26,27,29
NGC 6894	69- 2°1	20 14 22-8	+30 24 36	-11.41	44"	8	17.6B		0.9	-40.9	See Text		2D	1,5,7,12,13,15,16,19,20,21, 23,25
MI-78	93+ 1°1	21 19 05.5	+51 40 41	-12.88		4		cw	4.1	-73.8	1.13	2.5	2D	1,11,16,30
к3-60	98+ 4°1	21 25 57.9	+57 26 09	-13.17		7			2.9		1.3	4.0	2E	1,2,3,4,5,7,11,13,17,18,25,30
K3-61	96+ 2°1	21 28 23.8	+54 14 17		6"	5		WR	2.0		0.91	0.24	2D	16
Me 2-2	100- 8°1	22 29 37.7	+47 32 37.	5 -11.17	4"	4.5	11.4B	Of	0.44	140.5	1.1	4.0	2A	1,3,4,11,15,22,23,26
NGC 7354	107+ 2°1	22 38 26.2	+61 01 17	-11.60	20"	7	>16.2		1.90	-30.6	1.3	4.0	2F	1,7,5,15,16,19,20,21,23,25,26
MI-80	107- 2°1	22 54 14.6	+56 53	-12.81	8"	7		c₩	1.5	-47.4	1.23	1.0	2E	1,7,15
Vy 2-3	107-18°1	23 20 36	+46 37 32	-11.96		5	14.9V	cs	0.48	-40.6	1.1	2.0	2D	1,26,30

REFERENCES.—(1) Acker 1978; (2) Acker et al. 1982; (3) Aller and Keyes 1985; (4) Barker 1978; (5) Cahn and Kaler 1971; (6) Carrasco, Serrano, and Costero 1983; (7) Daub 1982; (8) Gathier et al. 1983; (9) Gathier, Pottasch, and Goss 1986; (10) Gathier, Pottasch, and Pel 1986; (11) Isaacman 1984; (12) Kaler 1985a; (13) Kaler 1986; (14) Kaler, Mo Jing-Er, and Pottasch 1985; (15) Khromov 1985; (16) Maciel 1984; (17) Maciel and Pottasch 1984; (18) Milne and Aller 1975; (19) Minkowski 1965; (20) O'Dell 1962, 1963; (21) Pottasch 1984; (22) Sabbadin 1984a; (23) Sabbadin 1984b; (24) Sabbadin, Bianchini, and Hamzaoglu 1984; (25) Sabbadin 1986; (26) Shaw and Kaler 1985; (27) Turner and Terzian 1984; (28) Viadana and de Freitas-Pacheco 1985; (29) Webster 1983; (30) Kaler 1983b.

mic $H\beta$ fluxes are listed in column (5). These data come largely from O'Dell (1962, 1963), Kaler (1983b), Webster (1983), and Shaw and Kaler (1985) as referenced in column (15). Column (6) gives the diameters in seconds of arc as selected from various sources beginning with Curtis (1918). Column (7) gives the excitation class (cf. Aller 1956; Aller and Liller 1968). For low-excitation objects, this quantity is based primarily on the [O II] $\lambda 3727/[O III] \lambda 4959$ ratio. For objects of higher excitation, He II $\lambda 4686/H\beta$ is an important criterion of excitation. Column (8) gives the (mostly B and V) magnitudes of the central stars when these are available; Shaw and Kaler (1985) have published measurements for a number of these objects. Column (9) refers to the spectrum of the central star. Here the notations Of, O9, and so on, have their usual spectral class meanings; WR denotes a spectrum of the Wolf-Rayet type; cw means a weak continuum is observed; cs means a strong continuum. Descriptions of most of these spectra may be found in Aller and Keyes (1985); further data for many of these objects are given by Acker et al. (1982). Column (10) gives $C = \log [I(H\beta)/F(H\beta)]$, where $F(H\beta)$ is the flux in ergs cm⁻² s⁻¹ received at the top of the Earth's atmosphere and $I(H\beta)$ is the flux corrected for extinction by the interstellar medium. We determined C primarily from the Balmer decrement in the conventional way. Column (11) gives $V_{\rm LSR}$, the radial velocity in km s⁻¹ referred to the local standard of rest as taken from the catalog of Schneider *et al.* (1983). Columns (12) and (13) contain the derived plasma diagnostics. For some southern objects we adopted T_e and N_e values kindly supplied by S. Pottasch (1986, private communication). Column (14) lists the table in which the intensity data for the particular nebula are to be found. The numbers in column (15) pertain to references listed at the end of the table. We include references not only to published spectroscopic, photometric, and morphological data for the individual nebulae, but also to distance estimates such as those by Acker, O'Dell, Minkowski, Daub, and others.

III. THE OBSERVATIONS

The observational data were all secured with the Robinson-Wampler image-tube scanner (ITS) on the Shane Telescope at Lick Observatory. Figures 1 and 2 show reduced scans for the low-excitation planetary nebula, NGC 6833, and for the moderately high-excitation nebula, NGC 6620. The observing procedures are conventional; they are described, for example, in Aller and Czyzak (1979), where sources of error are also discussed. We append herewith additional comments pertaining to far southern objects, for which likely sources of

FIG. 1.—Spectral scans of the low-excitation planetary NGC 6833. All scans are corrected for effects of atmospheric extinction, response functions, and nonlinearity of dispersion. Nebular fluxes were measured in units of ergs cm⁻² s⁻¹ Å⁻¹. We give here relative fluxes. All data were secured with the 3 m Shane telescope and image-tube scanner on 1981 August 7. All scans of NGC 6833 have a resolution of 9 Å. (a) The regions 3500–5100 Å. The two magnifications are $1 \times$ (scaled to strongest line λ 5007) and $25 \times$. Note the strong background continuum. (b) The region 4500–6800 Å, magnifications $1 \times$ and $25 \times$. Neither [N II] nor [S II] is prominent in this object, although the [S III] auroral-type transition λ 6312 is fairly strong.

inaccuracies are the following:

- 1. Atmospheric extinction which is severe at low altitudes.
- 2. Atmospheric dispersion which can be eliminated by rotation of the Cassegrain tube on which the ITS is mounted so that the longer dimension of the slot is perpendicular to the horizon. Because of this effect, except in some crowded fields, we used a $2'' \times 10''$ slot.
- 3. The contamination of $\lambda 4363$ by the strong Hg $\lambda 4359$ line from the lights of San Jose and other nearby communities is sometimes serious and poses particular difficulties for the determination of electron temperatures.
- 4. Crowded Milky Way fields often cause trouble for faint nebulae. By a slight rotation of the tube, it is usually possible to avoid the contaminating star, but there still may be faint stars that are not visible on the slot.
- 5. If the sweeps of the ITS are set when the telescope is pointed to the zenith, they may drop when the telescope is turned south and then bounce back when the telescope is set north again. This problem can be avoided by setting the sweeps at the same altitude as the southern objects which are to be observed, some 2–4 hours before starting work.

To test at least some altitude-dependent effects, we reduced some nebular spectra using both our oft-used comparison star, BD \pm 28°4211, and the star LTT 6248, which lies at nearly the same declination as several of the southern planetary nebulae. From a comparison of the two derived sets of line intensities for the rather heavily reddened object H1-23, we found closely comparable interstellar extinction factors and a mean discordance between the two sets of line intensities of $4.2\% \pm 2.4\%$. We chose C = 2.85. The differences be-

tween the two sets of values involved the combined effects of errors in the assumed stellar flux distribution and in atmospheric extinction.

Note that our intensity measurements refer to a $2'' \times 10''$ slot across the brightest portions of extended nebulae, across the centers of very compact objects, or through the ring just avoiding the central star in PNs such as NGC 6891. These measurements are thus often not immediately comparable to those made in the integrated light of the nebula, a fact which must be kept in mind in comparing these data with those obtained from other sources.

Table 2 lists the line intensity measurements. For each line we list the identification, and the value of the wavelengthdependent Seaton extinction function (Seaton 1979), f_{λ} , by which C has to be multiplied to obtain the logarithm, Cf_{λ} , of the correction factor by which the observed line flux has to be multiplied to obtain the corrected intensity, I_{λ} (corr), relative to $H\beta$. We tabulate the thus corrected intensities throughout, all on the scale $I(H\beta) = 100$. The columns headed σ give the percentage dispersion error found from the spread of the individual measurements. These errors depend on the spectral region involved, being larger for lines in the ultraviolet. They are also larger for intrinsically weak lines of low flux, and therefore for most lines in faint nebulae. The error can become large for any weak line blended with strong artificial or natural night-sky radiation. Fortuitous agreement is often found; we do not tabulate σ-values less than 3%. Note, however, that the total error involves effects accruing from uncertainties in the response function, in the accepted value of C, in the atmospheric extinction, and perhaps other systematic causes such as items 2, 4, and 5 noted at the begin-

FIG. 2.—Spectral scans of the moderately high excitation planetary NGC 6620. The scans involve the same reduction procedure as for Fig. 1. All the data were secured with the Shane 3 m telescope and image-tube scanner 1982 May 29. The resolution of Fig. 2 b is 3.5 Å; all other scans have a resolution of 9 Å. (a) Lower dispersion tracing of the region 3400–5100 Å. Note the strength of low-excitation [S II] $\lambda\lambda4068$, 4076, and high-excitation [Ne V] $\lambda3426$. Magnifications are $1\times$ and $15\times$. (b) Higher dispersion tracing of the region 3700–4500 Å. Magnifications are $1\times$ and $50\times$. Lines of the Bowen fluorescent mechanism such as O III $\lambda3759$ and N III $\lambda\lambda4097$, 4103 appear in this object. (c) Lower dispersion tracing of the region 4500–6900 Å. Relative magnifications are $1\times$ and $30\times$. Note the great strength of [N II] $\lambda5200$ and [N II] $\lambda\lambda5755$, 6548, and 6584. (d) Lower dispersion tracing of the region 6200–7800 Å. Magnifications are $1\times$ and $20\times$. Although [Ar III] $\lambda7135$ is strong, [Ar V] $\lambda7005$ is relatively weak.

0.0

Fig. 2*d*

7000 Wavelength

6600

7400

(A)

7800

 $\begin{tabular}{ll} TABLE~2\\ Line~Intensities~Corrected~for~Interstellar~Extinction\\ A. \end{tabular}$

					====										
λ	Ident.	fλ	NGC 6879	Me 2-	<u>-2</u> σ	<u>M2-2</u>	σ	NGC 63	<u>69</u> σ	<u>M3-20</u> σ	M1-35 Ι σ	M1-38	-	M1-44	<u>+</u> σ
	ident.									1 0					
3727	[0 II]	0.256	14.7 10	20.9	13	6.7:	5	48.6	50	39.0 21	34.6 3	85 2	24	33.5	9
3750	Н	0.251	3.7 20	2.94	9					5.5 30				3.1	30
3770	Н	0.247	3.8 20	3.55	11					6.1		3.8		3.6	10
3797	Н	0.242	5.2 14	5.10	13					7.5 27		8	9	4.2	10
3819	He I	0.239	0.14 32	1.83	20										
3835	Н	0.235	7.5 19	7.23	4	7.1	17			6.7 42		7.4		5.54	22
3868	[Ne III]	0.228	94.0 9	58.8	4	98.5	3	84.2	.8	99.7 4	46.1 22			12 7	20
3889 3970	H, He I [Ne III], H	0.224 0.207	19.7 4 42.4 12	16.5 29.7	12 25	17.7 35.5	2 13	18.9 37.1	17 5	23.6 12 40	14.8 12 18 37		24	13.7 10.6	10
4009	He I	0.198	42.4 12	0.25	30	,,,,	13	37.1	,	40	16 3/	14.4	~-	1000	
4026	He I	0.194	2.8 30	3.02	10					2.4: 24					
4068	[S II]	0.185	1.17	0.90	17					2.7:		7.9	60		
4076	[S II]	0.183													
4101	нδ	0.177	25.6 11	26.0	6	28.4	12	26.3		29.4 9	27.5	24.5	18	25.9	11
4121	He I	0.173		0.42	_										
4143	He I	0.167		0.46	8										
4267 4340	C II HY	0.139 0.121	49.2 8	0.46 46.3	8 4	45.5		46.4		40.2.6	44.3	5 46.2	4	46.7	7
4363	[0 III]	0.116	7.9: 5	5.4	8	15.9	13	14.2	31	49.3 6 9.6 12	7.7: 68		7	40.7	•
4388	He I	0.110	0.82 10	0.84	7	13.7	13	1	J.)•0 IZ	, . ,	•			
4471	He I	0.090	4.94 8	7.05	3	5:	38	7.0	10	4.6 8	8.0 1	1 1.7		2.7	15
4609		0.058													
4634	N III	0.055	0.7 30	0.08	35										
4640	N III	0.051	2.6 30	0.27	14					1.8					
4648,50		0.049		0.19											
4658	[Fe III] C IV	0.046	0.9 20	0.17	23										
4686 4711,13	He II B [Ar IV]	0.040 0.034	3.1 30 3.5 8	1.25	10 12	8.96 4.5	3 20	2.4	55	1.6: 34 1.8 25					
4740	He I [Ar IV]	0.034	2.8 8	0.36	12	2 2.	E0.			1.5.0					
4861	Hβ	0.034	100 4	100	65	2.2: 100	50 5	100	5	1.5 9 100 6	100	100	R	100	2
4921	He I	-0.014	0.58 20	1.3	18	100		1.55		2.1 6	100	100	J		
4050	[0 ***]	-0.022	375 5	242	4	390		448	5	454 6	270	5		2.9	4
4959 5007	[0 III] [0 III]	-0.022				1159		1307	5	1347 6	833	6		8.8	
5200	[N I]	-0.074												1.7	6 16
5517	[CL 111]	-0.139	0.38 20	0.13	19			0.48		0.63:					
5537	[CL III]	-0.142	0.38 20	0.19	19			0.91	_	0.78:		17			
5755	[N II]	-0.183	0.19 14	4.14	8 9	12.0	15	1.77 15.2	7 19	13.8	2.3 20.6	17 11 1.3	1	6.9	3
5876	He I	-0.205	14.1 12	19.3	9	13.0	15	13.2	19	13.0					
6300	[O I]	-0.275	0.26 22	1.68	7			3.2		1.55) 14		
6312	[S III]	-0.277	0.52 30	0.61	28			1.3	5	1.03	0.92:				
6363	[O I]	-0.285 -0.312		0.54 (43)	13			1.17 (22.5)		4.6 13	1.44 51:	16 (45)		(54)	6
6548 6563	[N II] Ha	-0.312	298 5	285	5	287	15	285	10	297	272	274		283	4
6584	[N II]	-0.317	7.05 20	157	16	3.65	50	62.2	7	11.1	166	8 146		178	3
6678	He I	-0.331	3.55 4	4.93	2	2.62	16	3.8	23	3.47 7	4.89	7 _	_	2.	
6717	[S II]	-0.336	0.36 20	0.39	8			2.81		1.0 12	5.65				7 13
6730	[S II]	-0.338	0.66 20	0.57	4			5.25	8	1.8 4	10.1	8 15	13	3 11.	
7065	He I	-0.382	3.8 23	13.4	16	3.35	19	5.4	5	4.5 3		12			42 8
7135	[Ar III]	-0.391	8.55	7.4	20	3.86	6	16.6	11	6.6 3	18.5			0.	88 68
7237	CII	-0.403	0 49 14	0.42	21			0.55							
7278 7 3 25	He I [O II]	-0.408 -0.413	0.48 14 1.33 19	0.67 7.0	21			0.69 5.93	15	3.26 14	3.65	8 3.	0		
7530	[CL IV]	-0.436	33 19	,.0				J•73	1)	J. 20 14	3.03	Ų J•	9		
7751	[Ar III]	-0.460						3.97	7	1.3 15	3.7	2			
8045	[CL IV]	-0.489													

TABLE 2—Continued

B.

:=	λ	Ident.	fλ	M1-4	σ	K3-6	7 σ	CN 2	-1 σ	NGC 656	57 σ	IC 4732	NGC I	6807 σ	Me 1	- <u>1</u>	NGC 6	i833 σ
	3727 3750 3770 3797 3819	[O II] H 12 H 11 H 10 He I	0.256 0.251 0.247 0.242 0.239	14.8 3.0 3.5 5.1	3 18 18 18 20	47.1 4.7 5.1 6.0 2.4	6 25 20 15 14	20.3 2.4 2.4 3.3 1.23	5 25 30 30 19	18.6 3.5 4.0 4.6 1.02	6 15 15 15 20	18.4 2.8 1 3.8 1 5.4 1 1.35 1	5 5. 8 4.	2 6 6 7 9	3.7 4.0 4.7	13 20 15 15	15.8 2.6 3.3 4.5 1.09	4 6 9
	3835 3868 3889 3970 4009	H 9 [Ne III] H, He I [Ne III], H He I	0.235 0.228 0.224 0.207 0.198	6.8 84.7 17.5 42.7 0.54	20 3 3 4 20	7.4 115 22.5 48.5	10 5 5 8	5.1 106 13.8 44.1	35 5 6 6	6.01 62.5 18.8 29.3	25 5 11 8	7.7 1 130 19.9 1 51.4 1	9 114 0 16.	7 12 6 4	18.0	6 5 8 6	6.8 71.0 15.5 35.3	3 2 2
4	4026 4068 4076 4101 4121	He I [S II] [S II] Hô He I	0.199 0.185 0.183 0.177 0.173	1.9 9.2 27.1	40 15 3	2.8 3.2 26	23 13 5	2.4 3.2 25.2	7 5 5	2.4 0.90 0.35 28.4		2.3 I 2.3 I 1.22 3 27.1	3 3.	5 22 1 22 5 4	11.8 3.0	7 23 27 3 20	2.07 1.9 26.5 0.59	10 3 3 4
	4267 4340 4363 4388 4471	C II HY [O III] He I He I	0.139 0.121 0.116 0.110 0.090	0.52 49.7 12.5 0.77 4.34	3 4	45.9 16.3 4.85	5 6 7	46 3.8 4.8	5 6	0.88 50.4 7.9 0.80 4.88	5 4	0.8 46 1 21 1 0.78 2 5.6 1	0 12. 7 0.	2 10 75 6	9.8 0.7	30 3 6 20 3	0.16 47.3 12.4 1.1 4.65	.0 4 3 20 3
	4609 4634 4640 4648,50 4658	[Fe III,	0.058 0.052 0.050 0.049 0.046	2.4	18			3.3	19	0.20 0.59 0.58	40		0.	26 15 54 9 6 50	0.52	4	0.39 0.36	7 7
	1.00	C IV]	2.242						_	0.56				54 7	0.72	11		
	4686 4711,13		0.040	6.46				4.6	7	1.87	18	1.06 3	3 0.	36 34	3.4	12		
	4740 4861 4921	[Ar IV] [Ar IV] Hβ He I	0.034 0.031 0.00 -0.014	3.0 2.63 100 0.88	12 2	2.2 2.2 100 2.6	14 12 5 35	2.5 3.1 100 0.71	20 12 5 22	1.38 0.83 100 1.9			9 1 . 6 100	5 5 87 3 6 92 7	4.4 100	14 14 5	1.17 0.70 100 1.0	7 16 4 6
5	1959 5007 5200	[O III] [O III] [N I]	-0.023 -0.033 -0.074	418 1255 0.66	2 2 20	372 1109	3 6	553 1597	4 4	337 967	3 3		3 458 3 1376	4 10	480 1407		250 765	24 2
-	5517 5537	[CL III]	-0.139 -0.142	0.26 0.31	10 10	0.43 0.56	30 23	0.40 0.73	15 15	0.26 0.38		0.18 2 0.26 3						
6	5755 5876 5300 5312 5363	[N II] He I [O I] [S III] [O I]	-0.183 -0.205 -0.275 -0.277 -0.285	0.15 14.5 0.40 0.63 0.19	40 17 50 19 20	1.84 14.8 4.33 1.85 1.08	13 10 25 26 20	0.74 14.1 2.36 1.6 0.92	25 15 20 20 20	0.33 15.1 1.7 0.84 0.57		0.24 5 13.0 3.0 1 1.5 1 1.1 1	5 16. l 4. 7 1.	3 10 1 26 6 20	17.0 8.35 3.65	23 5 4 13 22	1.86 13.4 3.1 0.74 1.03	6 5 17 25 25
6	5548 5563 5584 6678 5717 5730	[N II] Hα [N II] He I [S II] [S II]	-0.312 -0.315 -0.317 -0.331 -0.336 -0.338	300 7.25 3.34 0.43 0.78		289 58.1 3.26 2.06 3.48	10 17 14 30 10	(8.7) 276 33.4 3.38 1.3 2.59	15 3 10 13 12 15	303 12.4 4.1 0.48 1.06			0.	6 4 7 4 62 11 86 33 86 10	282 206 4.0 9.5	5 5 3 6 6 9	288 28.0 4.4 0.285 0.549	
7	7065 7135 7237	He I [Ar III] C II	-0.382 -0.391 -0.403	5.6 6.37 0.12	7 6 36	8.29 8.5	12	6.35 13.0	13 14	7.8 6.1 0.58		8.65 1 6.94 2 0.8 4	11.		6.8 28.5	8 11	9.8 9.0	3
7	'278 '325	He I [O II]	-0.408 -0.413	0.64 1.54	10 11	0.79 6.66	51 13	5.43	12	0.86 4.53		10.20 1		8 3		10	0.88 11.4	4 5
7	7530 7751 8045	[Cl IV] [Ar III] [Cl IV]	-0.436 -0.460 -0.489	1.3	18	1.89	23	3.25	10	0.16 1.58 0.41		1.7 1		13 23			2.27	9

4	Ь				10 10 8	& 6 -	50			
NGC 6804	I	78	19 40 23 45.6	87	8.6 2 100	251 794	7.8	287		
,	ا	113	15 7 2		-	7.7		5 2	6 4	
H1-6	Ι α	15.8 (6) 8	13.0 9.1 27.1 43.2		100		1.2	280 151	5.9	
_	٥	21 47 18 21	3 4 11					4 19	∞ ∞	
M2-33	1	34 4.5 7.1 35.7	19.3 25.5 46.6 2.2	5.1	0.6	1.3 201 592	13	0.3 272 7.0	3.5 0.63 0.69 2.8 8.65	0.72 0.78 0.85 1.8
38	ь	11.2 6 35 8	20 20 4	4	27 18 4	28		5 2 11	5 7 14	18 11 11 18
M2-CM	ρΙ	8.9 4.6 7.4 90	38.2 2.4 24.9 48.1 12.6	7.7	1.2 0.5 100	1.0 378 1203 0.76	13.1	1.47 0.30 290 12.5	2.90 0.44 0.87 8.13 7.82	0.56 5.9 4.1 1.55
	٥	15	10 9 7 7	24	3	14 10 1:	œ	ო ∞	20 15 13 10	11
M3-15	I	57	4 9	8.4	100	336 1026	14.1	272 38.7		4.1
	b	10	50 6 9 6	9	9	8 3	∞	4 2	12 30 30 12	
H2-18	ī	20.3		6.4	4.3 7.2 100	483 1491	15.4	285		
	!			~		2 2 48 2 149	∞ i∪	3 28	8 5	21 21 7
3	р		177	, 38	-,					
H1-23	1	5 66.7	39 26.7 45.3	6.7	100	4.0 406 1221 3.4	19.5	1.1 293 72.2	4.2 3.65 5.63 5.8 19.2	1.52 2.34 4.4
	ъ	36 1.6	80 40		9	m m	15	30 45 4 5	28 15 15	
H1-18	o I	40	52.3 27.7 47	9.1	100	426 1287 5.5	22.4	1.8 2.6 300 236	5.0 4.1 8.1 9.4 30.3	0.85 3.76 3.52 5.9
	Б	16 13 14	13 21 6	13		6 1 14	4	10	14	
M2-10	1	74 6.6 7.5	19.3 25.5 49.2	0.9	.100	44.9 142 1.5 1.6	14.7	293 237	4.3 6.5 10.4 3.7 9.2	1.7
	ъ	30 30 10	10 30 3	10	5 .1	3 3 1	15 16	20 3 2 9 2	10 7 7	
M4-3		6.6.1	- 6	-		-				
7W	I	4.6 6.5 58	34.7 3.5 26.7 47.7 6.5	4.7	100	1.4 302 930	13	0.9 288 21.0	3.3 1.13 1.81	
	р	9 2	10			40 7 8		9	6 19 5 10	11
M2-6	I	61.5 4.5 6.1 42.9	21.7 27.8 49.8 6.4	4.8	100	1.3 235 611	12.2	297 40.2	3.3 1.2 2.1 5.0 7.0	0.5
	ťγ	0.256 0.242 0.235 0.238		0.090		-0.014 -0.023 -0.033 -0.074 -0.183	-0.205	-0.285 -0.315 -0.317	0.331 0.336 0.338 0.382 0.391	-0.408 -0.413 -0.413
	Ident.	[0 II] H 10 H 9 [Ne III]		He I He II He I	ne 1 [Ar III] [Ar IV] Hß	He I [O III] - [O III] - [N I] - [N II] -	-		He I [S II] [S II] He I [Ar III]	He I [O II] [O II] [Ar III]
	~	3727 3797 3835 3868	3970 4068,76 4101 4340 4363	4471	4740 4861	4921 4959 5007 5200 5755		6363 6563 6584	6478 6717 6730 7065 7135	7278 7319 7330 7751

^a M2-23 I(5517) = 0.14, I(5537) = 0.19 [Cl III].

 $TABLE\ 2-Continued$

D.

λ	Ident.	f_{λ}	NGC 6	5 <u>578</u> σ	NGC 66	529 σ	NGC I	6781 ^a σ	NGC 6	5 <u>891</u> σ	NGC 6	894 σ	M1-7	<u>σ</u>		3 σ	<u>K3-</u>	<u>σ</u>
727 750 770 797 319	[O II] H 12 H 11 H 10 He I	0.256 0.251 0.247 0.242 0.239	21.2 4.7: 5.0 6.45 2.0	16	41.1 3.2 4.2 3.9 1.0	11 22 26	319		4.25	,	236 4 5.9 3.5	30	81.4	4	13.0		21	16
335 368 389 970 909	H 9 [Ne III] H, He I [Ne III], He I	0.235 0.228 0.224 H 0.207 0.198	8.08 68.9 22.8 37.3		6.02 33.3 18.8 27.5	7 10 12	85 11.1 36.7		6.7 55.8 19.0 31.7	8 6 10 5	7.6 63.7 16.9 37.7	14 6 3			6.5 89 22 40	30 17	52.6 20.5 22.3	16 8
026 068 076 101 121	He I [S II] [S II] Hδ He I He I	0.194 0.185 0.183 0.177 0.173 0.167	3.0 3.1 27.6	10 8	2.94 1.39 27.2 0.67 1.16	12 13	30.7		0.41 25.5	6	4.66 7.7 26.9	,	27.1		25.8		25.9	22
267 340 363 388 471	C II HY [O III] He I He I	0.139 0.121 0.116 0.110 0.090	1.1 47.2 2.8 1.11 4.91	20 20 19	46.5 2.8 4.43	4.3	3 43.1		49.3 4.54 0.75	5 14 21	44.3 2.3 4.65	7	49.8	29	47.4 8.78 6.2	5 20	47.2	28
509 534 540 548,50 558	N III N III O III [Fe III] C IV	0.058 0.052 0.050 0.049 0.046	3.51	18	1.26	27			0.91						2.5	14		
586 711 13	He III	0.040	1.0	30							6.64	22						
740 861 921	[Ar IV] [Ar IV] HB He I	0.034 0.031 0 -0.014	1.30 0.84 100 1.07	21 12 6	0.50 100 1.03	6 16	100	5	0.47 100	40 5	100	6 27	100	9	2.5 1.7 100	50 32	100	9
159 107 100 17 137	[C% III] [N I] [O III]			6 6 27 15	226 674	6 6	331 1169	4			235 749 5	6 9 44	123 362	7 11	334 1010	6 7	300 937	7 6
55 76 00 12 63	[N II] He I [O I] [S III] [O I]	-0.183 -0.205 -0.275 -0.277 -0.285	0.23: 15.8 0.64	6 12	12.0 0.53	18	17		13.2 0.19	6 12	9.0 12.3 10.1 4.0	28 13	12.6	12	7.5	19	16	23
48 63 84 78 17	Hα [N II] He I [S II] [S II]	-0.305	293 11.2 4.16 0.46	5 5 25	289	22 9 11 17 55 34	(71) 286 258 7.11 15.0 14.9	18 9 9	0.10	4 9 15 18	284 337	5 6 21 5 7	302 57.8 3.0 1.85	6 17 24	286 3.42	7	(59) 285 168 3.85 3.4 3.0	30
65 35 37 78 25	He I [Ar III] C II He I [O II] [Ar III]	-0.382 -0.341 -0.403 -0.408 -0.413	0.54 1.66	34	4.2 12.1 0.66 1.67	6 5			9.5	12 9	3: 19.7	50	11.3 1.14 12.94	7 8	3.4 6.4	7		1.5
773 3330 0 0 0 1 L 2 3 3 3 4 5 5 5 5 5 7 7 8 9 1 1 2 3 3 3 4 5 5 5 5 5 7 7 8 9 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7 8 9 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7 8 9 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7 8 9 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7 8 9 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7 8 9 1 1 2 3 3 3 4 5 5 5 5 5 5 5 7 7 8 9 1 1 2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27 50 70 97 71 99 35 68 97 70 99 35 68 97 70 99 26 68 68 70 10 21 44 66 63 63 63 64 63 63 63 63 63 63 63 63 63 63 63 63 63	27 [0 II] 50 H 12 70 H 11 97 H 10 19 He I 35 H 9 68 [Ne III] 89 H, He I 70 [Ne III], 09 He I 26 He I 68 [S II] 01 Hô 21 He I 44 He I 67 C II 44 He I 68 [O III] 88 He I 71 He I 70 N III 48,50 O III 11,13 He I, 67 [Ar IV] 61 Hβ 21 He I 61 Hβ 21 He I 61 Hβ 21 He I 61 III	27 [0 II] 0.256 50 H 12 0.251 70 H 11 0.247 97 H 10 0.242 19 He I 0.239 35 H 9 0.235 68 [Ne III] 0.228 89 H, He I 0.207 09 He I 0.198 126 He I 0.194 168 [S II] 0.185 176 [S II] 0.183 01 Hδ 0.177 21 He I 0.173 44 He I 0.167 167 C II 0.139 440 Hγ 0.121 163 [0 III] 0.116 88 He I 0.110 71 He I 0.090 09 0.058 34 N III 0.052 40 N III 0.052 40 N III 0.055 48,50 0 III 0.049 58 [Fe III] 0.046 C IV 86 He III 0.040 11,13 He I, [Ar IV] 0.034 40 [Ar IV] 0.034 40 [Ar IV] 0.031 61 Hβ 0 21 He I -0.014 59 [0 III] -0.053 00 [N I] -0.074 17 [C ² III] -0.139 37 [C ² III] -0.139 37 [C ² III] -0.142 55 [N II] -0.255 10 [O I] -0.255 11 [O I] -0.255 12 [S III] -0.277 13 [O I] -0.277 14 [S III] -0.277 15 [S III] -0.277 16 [S III] -0.277 17 [C ² IIII] -0.139 17 [C ² IIII] -0.277 18 He I -0.205 19 [O II] -0.275 10 [O I] -0.275 11 [S III] -0.316 11 [S II] -0.317 12 [S III] -0.277 13 [S III] -0.317 148 He I -0.205 150 [O I] -0.275 161 [S III] -0.331 17 [S III] -0.341 18 He I -0.331 18 He I -0.331 19 [S III] -0.341 10 [S III] -0.403 11 [S III] -0.403 12 [S III] -0.403 12 [S III] -0.403 13 [S III] -0.403	λ Ident. f _λ I 27 [0 II] 0.256 21.2 50 H 12 0.251 4.7: 70 H 11 0.247 5.0 97 H 10 0.242 6.45 19 He I 0.239 2.0 35 H 9 0.235 8.08 88 [Ne III] 0.228 68.9 88 H, He I 0.224 22.8 70 [Ne III], H 0.207 37.3 09 He I 0.198 26 He I 0.194 3.0 168 [S II] 0.185 3.1 176 [S II] 0.185 3.1 176 [S II] 0.183 01 Hδ 0.177 27.6 181 0.167 27 (C II 0.139 1.1 182 He I 0.110 1.11 171 He I 0.090 4.91 09 0.058 34 N III 0.052 40 N III 0.050 44,50 0 III 0.049 58 [Fe III] 0.046 C IV 86 He III 0.049 18. [Ar IV] 0.034 1.30 40 [Ar IV] 0.034 1.30 41 Hβ 0 100 42 He I -0.014 1.07 59 [0 III] -0.023 286 07 [0 III] -0.033 800 08 [N I] -0.074 17 [C ² III] -0.183 0.23: 18 He I -0.205 15.8 19 He I -0.275 0.64 19 He I -0.336 0.46 19 He I -0.337 11.2 19 He I -0.336 0.46 19 He I -0.338 4.13 19 He I -0.331 4.16 10 [S II] -0.336 0.46 17 [S II] -0.337 11.2 18 He I -0.331 4.16 19 He I -0.338 0.82	λ Ident. f _λ I σ 27 [0 II] 0.256 21.2 50 H 12 0.251 4.7: 70 H 11 0.247 5.0 97 H 10 0.242 6.45 16 19 He I 0.239 2.0 35 H 9 0.235 8.08 68 [Ne III] 0.228 68.9 89 H, He I 0.224 22.8 70 [Ne III], H 0.207 37.3 09 He I 0.198 26 He I 0.194 3.0 168 [S II] 0.185 3.1 10 176 [S II] 0.183 01 Hδ 0.177 27.6 8 21 He I 0.173 44 He I 0.167 267 C II 0.139 1.1 20 40 HY 0.121 47.2 63 [0 III] 0.116 2.8 20 88 He I 0.110 1.11 19 71 He I 0.090 4.91 09 0.058 34 N III 0.052 40 N III 0.052 40 N III 0.052 40 N III 0.049 58 [Fe III] 0.046 C IV 86 He III 0.040 1.0 30 11,13 He I, [Ar IV] 0.031 0.84 12 61 Hβ 0 100 6 21 He I -0.014 1.07 59 [0 III] -0.053 800 6 07 [0 III] -0.074 17 [C ² III] -0.139 0.45 27 37 [C ² III] -0.139 0.45 27 37 [C ² III] -0.139 0.45 27 37 [C ² III] -0.142 0.51 15 55 [N II] -0.275 0.64 12 12 [S III] -0.277 63 [O I] -0.285 48 -0.312 (4.3) 5 60 [O I] -0.275 0.64 12 12 [S III] -0.277 63 [O I] -0.285 48 -0.312 (4.3) 5 18 He I -0.331 1.16 5 17 [S II] -0.340 0.45 12 18 He I -0.331 1.16 5 17 [S II] -0.340 0.45 12 18 He I -0.331 1.16 5 17 [S II] -0.340 0.45 12 18 He I -0.341 1.22 17 [S III] -0.340 0.45 12 18 He I -0.403 0.45 12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	λ Ident. f _λ I σ I σ I σ σ I σ σ σ σ σ σ σ σ σ σ σ	λ Ident. f _λ I σ I σ I σ I 27 [0 II] 0.256 21.2 41.1 11 319 50 H 12 0.251 4.7: 3.2 22 70 H 11 0.247 5.0 4.2 97 H 10 0.242 6.45 16 3.9 19 He I 0.239 2.0 1.0 26 35 H 9 0.235 8.08 6.02 7 688 [Ne IIII] 0.228 68.9 33.3 10 85 89 H, He I 0.224 22.8 18.8 12 11.1 70 [Ne IIII] 0.188 3.1 10 1.39 13 826 He I 0.194 3.0 2.94 12 827 [2 II] 0.185 3.1 10 1.39 13 828 H, He I 0.177 27.6 8 27.2 30.7 821 He I 0.173 0.67 821 He I 0.173 0.67 824 He I 0.167 1.16 22 826 (C II 0.139 1.1 20 840 HY 0.121 47.2 46.5 4.3 43.1 826 He I 0.110 1.11 19 827 He I 0.006 4.91 4.43 828 He I 0.110 1.11 19 71 He I 0.090 4.91 4.43 839 H, III 0.049 58 [Fe III] 0.046 C IV 86 He III 0.040 1.0 30 87 III 0.049 87 III 0.049 88 He I 0.040 1.0 30 88 He I 0.040 1.0 30 89 III 0.046 C IV 86 He III 0.046 1.0 30 87 III 0.031 0.84 12 88 He I 0.010 1.0 30 89 III 0.046 C IV 87 III 0.032 286 6 226 6 331 88 He I 0.046 89 III 0.046 1.0 30 80 III 0.049 50 III 0.032 286 6 226 6 6 331 70 [O III] 0.032 286 6 226 6 6 331 71 [C IIII] 0.016 2.051 15 71 [C III] 0.019 0.45 27 72 [C III] 0.019 0.45 27 73 [C III] 0.017 1.03 16 74 III] 0.074 1.70 1.03 16 75 [O III] 0.075 0.64 12 0.53 88 He I 0.0275 0.64 12 0.53 89 III 0.036 0.46 25 0.53 55 15.0 80 III 0.034 1.12 5 11.0 11 258 81 He I 0.034 1.12 5 11.0 11 258 81 He I 0.031 0.34 12 82 III] 0.031 0.45 12 83 He I 0.031 0.34 12 84 He I 0.031 0.34 12 85 III] 0.077 1.34 14.9 85 He I 0.034 0.45 12 86 He I 0.038 0.46 25 0.53 55 15.0 87 III 0.034 1.12 2 12.1 5 88 He I 0.034 0.45 12 88 He I 0.034 0.45 12 88 He I 0.034 0.45 12 88 He I 0.034 1.22 12.1 5 80 III 0.034 0.45 12 80 III 0.034 0.45 12 80 III 0.034 0.45 12 81 He I 0.040 0.54 13 82 III 0.034 0.45 12 83 He I 0.034 0.45 12 84 He I 0.034 0.45 12 85 He I 0.034 0.45 12 86 He I 0.038 0.54 34 0.66 87 III 0.049 0.54 14 0.66 87 III 0.049 0.54 14 0.66 88 He I 0.040 0.66 0.66 0.76 0.76 0.76 0.76 89 III 0.040 0.66 0.76 0.76 0.76 0.76 80 III 0.050 0.76 0.76 0.76 80 III 0.050 0.77 0.76 80 III 0.050 0.77 0.76 80 III 0.050	λ Ident. f _λ I σ I σ I σ I σ I σ σ I σ σ I σ σ I σ	Ident. f _λ I σ σ	Talent f T σ	A Ident. E I O O	Tabular Tab	Time Time	Tident	A Ident. f_\(\) T 0	A Ident E I O I	Year Year

^aSee also Table 3.

TABLE 2—Continued

E.

S				M2-2		Hubble		NGC 64		<u>Hubble</u>		M1-42		K3-6		NGC 662		M1~	
7АрЛ	λ	Ident.	fλ	I	σ	I	σ	I	σ	Î	σ	I	σ	I	σ	I	σ	I	σ
198	3727 3750 3770 3797 3819	[O II] H 12 H 11 H 10 He I	0.256 0.251 0.247 0.242 0.238	35.7 5.3: 5.84 5.5 2.18	6 5 8 21	32.7	12	61.4 2.85 3.9 5.5 1.9	8 9 29	34.8	13	51 3.1 4: 4.6 3.0	7 19 40 44	95	10	4.4	4 10 6 12	168 6.6	9 28
	3835 3868 3889 3968 4026	H 9 [Ne III] H,He I [Ne III],H He I	0.235 0.228 0.229 0.207 0.194	8.67 101.7 22.2 36.0 2.35	5 11 2.4	11 88.8 12: 4 38.1	30 20 44 20	7.7 125.7 19.1 49.7 3.5	7 4 4 24	8.8 112.5 17 47.7 3.48	33 11 19 4 6	7.4 53 19.7 25.8 3.4	15 10 7 29	123	5 25	6.8 120 20.7 35.6 2.3	5 8	7.52 74.2 19 36.3 4:	22 6 24
	4068 4076 4101 4227 4267	[S II] [S II] Ηδ [Fe V] C II	0.185 0.183 0.177 0.148 0.139	25.9	3	23.4	20	5.95 28.7 0.65	11 10 33	7.91 29.0 1.65 0.9	32 21 43	6.4 26.9 2.24	15 8 5	30	19		11 10 5	3 25•4	6
	4340 4363 4388 4471 4541	HY [O III] He I He I He II	0.121 0.116 0.110 0.090 0.074	48.4 16.6 4.56 0.84	8	42.2 7.2: 4.84	8 36 10	48.1 9.13 5.34	5 8	46 13.0 1.0 5.18 1.14	10 18	46.7 4: 8.0	10 54 4	43	20	50 7.86 0.74 5.15 0.88	9	47.4 16.8 2.7 2.4	6 19
	4609 4634 4640 4650 4658	N II,C II N III N III C III C IV	0.058 0.052 0.051 0.048 0.046	3.91	28			7.0	22	0.6 1.9 4.60 1.23 0.83	47 22 11 5	9.7	11			1.57 3.84 1.2		3.8	
	4686 4711,13	He II [Ar IV]	0.040 0.034	30.2	8	21.5		22.3	14	26.8		11.7	9	50.3	10	26.1	5	39.3	5
	4725 4740 4861 4921 4959 5007	He I [Ne IV] [Ar IV] Hβ He I [O III]	0.031 0.028 -0.014 -0.022 -0.033	3.24 2.79 100 1.01 460	16 14 4 30 6	4.26 2.79 100 1.11 411 1204	3 9 7	5.3 0.64 5.3 100 0.95 423 1198	24 16 9 23 8 8	5.05 0.97 7.30 100 1.6 516	8 7 8 2 69 4 3	2.7 1.7 100 1.7 180 547	34 40 11 35 4	100 484 1484	5 4 8	4.16 0.3 2.81 100 1.09 445 1292	4	2.2 100 432 1387	6 8 7
	5200 5411 5517 5537	[N I] He II [C ^L III] [C ^L III]	-0.074 -0.118 -0.139 -0.142	1.92	8	1.65 0.78 0.90	5 19 9	0.74 1.77 0.90 0.86	14 19 15 15	0.95 1.92 0.50 0.88	14	3.0 1.46 1.33 0.90	15	1404	Ü	2.4 1.57 0.58 0.96	19 13 17	4.4:	
	5755 5876 6102 6300 6312	[N II] He I [K IV] [O I] [S III]	-0.183 -0.205 -0.243 -0.275 -0.277	13.2 2.93 0.90	6 16	1.32 15.2 2.89 2.30	7	2.0 16.0 3.37 2.21	21 12 8	2.20 14.2 0.32 3.39 2.51	6 5 24 6	27.6 22.6 3.5 1.39	28 4 20 5	11	46	2.4 11.3 7.6 2.07	24 8 11 5	7.14 4.2	49 13 25 31
	6363 6435 6548 6563 6584	[O I] [Ar V] [N II] Ha [N II]	-0.285 -0.296 -0.312 -0.315 -0.317	0.66 (4.8) 289 13.5	13 5 8	1.18 (23.5) 297 68.5	4 4	1.03 0.37 (38) 288 119	10 7	1.20 0.16 34 298 101	19 2 4	1.43 (90) 283 267	25 6 5 6	(33) 290 98	4 4 4	2.9 (78) 283 225	5 18 9 9	(44) 288 145	10 5 9
	6678 6717 6730 7905 7065	He I [S II] [S II] [Ar V] He I	-0.331 -0.336 -0.338 -0.375 -0.382	2.98 0.79 1.27 4.50	5 27 6	3.6 3.5 6.7 5.75	8 9 8	3.90 5.57 9.97 0.29 5.33	8 7 4 17 4	3.37 4.26 8.18 0.65 5.90	6 4 5 4	5.72 13.2 18.0	14 6	2.8 3.4 5.8	32 21	3.23 18.7 27.6 0.4: 3.0	9 10	4.0 9.06 10.9	5 8
	7135 7237 7263 7281 7325	Ar III C II [Ar IV] He I [O II]	-0.391 -0.403 -0.406 -0.408 -0.414	4.05 4.02	10	21.4 0.14 0.50 4.88	12 28 5	5.82 0.7 5.4	11	27.5 0.3 0.3 0.63 6.3	42 34 14	18.6	9 15	12.6	8	21.4 1.4 6.6	29 24	0.92	14 2 11
	7530 7751 8048 8577	[CL IV] [Ar III] [CL IV] [CL II]	-0.436 -0.460 -0.489 -0.535			0.47 5.45	10	1.22		0.4 6.08 0.82 0.32	24 5 11	2.86		3.2:		5.1			-3

^aSee Table 3 for some additional data.
^bSee notes for additional data pertaining to helium lines.

TABLE 2—Continued F.

λ	Ident.	_{ξλ} -	K3-68 Ι σ		Hubble 5 Ι σ	_	IC 4673 Ι σ	-	H1-59 Ι σ		M2-30 L σ	_	M1-75 Ι σ	NG	C 6881 Ι σ	_ N	IGC 7354 Ι σ	
3341 3428	[Ne V], O III [Ne V]	0.373 0.345			39.3 161	10 22	32:						189	31	46 137	9		
3444 3727 3750 3760	0 III [0 II] H 12 O III	0.339 0.255 0.251 0.249	26	38	14.3 62.3	10 4	37: 29.6	25	23.0	18	12.5	3	129	8	17.7 64.4 3.7 4.0	5 7 32 20	32.3	17
3770 3797 3835 3868 3889 3967	H 11 H 10 H 9 [Ne III] He I, H8 [Ne III], H 7	0.247 0.242 0.235 0.228 0.224 0.207	72.7 23 32	8 23 32	4.52 6.9 120 14.0 52.3	30 25 10	7.8 10.9 102 17.1 46.7	30 5 7 8	69.0 15.9 29.6	10 8 14	5.4 5.9 95.9 17.0 48.4	27 36 9 20 18	142 23.5 70.8	4 4 9	4.2 5.1 7.0 144 18.4 53.9	9 11 23 15 10 7	96.8 22.7 44	33
4024,26	He I, He II				3.2	19	4.3:		5.5		2.8	20			3:	41		
4068 4076 4101 4340 4363 4471 4541 4634,40 4658	[S II] Hô HY [O III] He I He II C III	0.184 0.177 0.121 0.116 0.090 0.074 0.052 0.046	28 · 44 · 1 26	34 15 36	10.5 28.9 42.7 24.6 3.7: 8.54 2.55	19 4. 6 8 48	5.3 1 30.3 46.8 10.1 4.2 2.3 15.0	30 6 16	9.4 27.7 44.5 12.5 1.8: 5.1	17 9 56 32	2.65 28.9 44.8 12.4 4.3 1.8 8.4	6 12 8 6	14 26.1 46.7 9.33	39 19 8 2 10 32	7.7 2.3 26.1 46.2 22.2 3.8 1.7 4.6:	10 10 19 18 23 35	26.2 42.5 18.6	13 17 21
4686 4711,13	He II He I, Ar IV		101 8	10 13	65 9.8	4 25	76.0 11.8	7	81.9 13.6	5 11	42.6 7.8	6 5	99 25•1	12 24	43.4 6.1	12 19	49.4 7.4	5 13
4724 4740 4861	[Ne IV] [Ar IV] Ηβ	0.031 0.028 0.00	11: 100	4	1.2 18.5 100	31 11 3	9.3 100	8	9.5 100	8 4	6.6 100	4 11	17.4 100	22 16	1.7 8.8 100	5 13 4	6.0 100	22 4
4921 4959 5007 5200 5411 5517 5537	He I [O III] [O III] [N I] He II [CL III] [CL III]	-0.014 -0.022 -0.033 -0.074 -0.118 -0.139 -0.143	273 835 6.7:	8 6 45	642 1888 3.66 5.06 0.7 1.2	4 7 5 47 47	1.4 406 1211 6.4	8 5 5	384 1169 3.8:	6 7 40	3.6 455 1368 3.43	7 9	461 1376 18.4	4 5 9	577 1736 1.8 2.7	3 4 9	417 1328 2.2 4.5	4 8 28
5722 5755 5876 6074 6089	[Fe VII] [N II] He I He II [Ca V], [Fe VI]	-0.177 -0.183 -0.205 -0.239 -0.241			0.95 11.25 12.1 0.25 1.83	11 12 30	10.0	16	2.64		10.4	4	23.8 12.9	16 7	0.7 4.9 9.8	34 20 7	1.50 10.9	
6104 6300 6312 6363 6435	[K IV] [O I] [S III] [O I] [Ar V]	-0.243 -0.275 -0.277 -0.283 -0.296			0.51 19.0 1.8 6.0 3.40	5 16 15 4	2.8	27			1.50	18	22.0 10.7 6.9	5 32 18	10.5 2.9 3.7	6 15 13	2.5	24
6548 6563 6584 6678 6717 6730	[N II] Ha [N II] He I [S II] [S II]	-0.312 -0.315 -0.317 -0.331 -0.336 -0.338	281 10	17 19	116 281 379 2.8 5.2 9.9	9 5 3 8 11 5	(8.5) 288 31.6 3.6 3.7 4.9	9 18 11 14	(14.3) 281 42.4 3.6: 6.5 7.5	10 10 30 18	6.9	11 10 36 10	3.6: 338 286 1205 2.7 44.9 64.4	9 16 9 3	1.3 (51.4) 290 165 2.7 2.3 4.9	5 3 5 5 17		9 8 5 13 13
7005 7065 7135 7237 7263	[Ar V] He I [Ar III] [Ar IV] [Ar IV]	-0.375 -0.382 -0.391 -0.403 -0.406	11.1	8	5.6 4.4 35.7 0.6 0.41	11 13 9 20	1.7: 19.0		16.8		2.7 13.4	28 5.8	4.4	11 28 17		20 12 15	2.5 14.2	31
7281 7325 7530 7592	He I [O II] [C% IV] He II	-0.408 -0.413 -0.436 -0.443			0.33 19.8 0.42 0.6	23 5	2.1	19			1.72	12	12.2	16	0.50 23.1 0.35	18		
7751 8046	[Ar III] [Cl IV]	-0.460 -0.489			7.78 1.2	32	4.0	30			2.4	40	8.4	20	5.3 0.89		4.21	

COMMENTS ON INDIVIDUAL NEBULAE LISTED IN TABLE 2

MI-4.—Kaler 1985a obtained results in reasonable accord with ours, although he finds $T(O^{++}) = 12,800 \pm 800$ K versus our 11,600 K, and also a lower N_e . The discordance in the He abundance may be attributed partly to differences in measurement of I(5876).

M2-2.—See also Kaler 1985a, who obtains smaller values of T_{ϵ} and N_{ϵ} . We adopted T=12,000 K, N=5000 cm⁻³ as a compromise. The quality of the line intensities is only fair.

K3-68.—Probably a higher temperature stellar flux model should have been used, but improved observational data, requiring long dwell times, would be needed.

M2-6.—We use T_{ϵ} , N_{ϵ} values based on Groningen results. The assumed T(*) may be too high.

M4-3.—The finally adopted $T_{\rm e}$, $N_{\rm e}$ values differ slightly from those found by the Groningen workers.

H1-23.—The [S II] $\lambda\lambda6717,6730$ and [N II] $\lambda5755$ lines are stronger than predicted, suggesting an unresolved structure of high-density blobs. This is a relatively N-rich object.

Hubble 4.—This is a relatively N-rich object.

1987ApJS...65..405A

H2-18.—The Kudritzki model atmosphere for T = 77,000 K, log g = 4.72 was adopted on the basis of the assumption that $\lambda 4686$ was at least 70% of nebular origin. The T_{ε} predicted by the nebular model fits that from the diagnostics if we accept the uncertain I(4363) at its face value, but the model seems to fail for nitrogen.

Hubble 5.—The observed intensity of [Ne V] λ 3426 appears to be stronger than predicted; a blackbody central star flux may not be suitable. Observations should be obtained with a more favorable zenith distance.

NGC 6439.—Ultraviolet lines [Ne v], O III λ 3340 [Ne v] λ 3426, and O III λ 3444 are measured with intensities 13, 5.4, and 16.8, respectively, but with large errors of 24%–38%. They have not been used in the abundance analysis.

IC 4673.—Because of severe atmospheric extinction the [Ne v] λ3426 intensity is very uncertain.

M1-42.—In constructing a nebular model we assumed $\lambda 4686$ to be of nebular origin.

M1-44.—Note that in this object [Ne III] λ 3868 is missing. If [N II] $I(5755) \lesssim 0.\overline{8}$, as seems likely, $T_e \lesssim 6600$ K. The excitation is very low; [O III] is very weak. No theoretical model is possible.

NGC 6620.—The intensities of He I $\lambda\lambda$ 4121, 4143 and He II, N III λ 4200 are, respectively, 0.63, 0.67, and 0.50 on the scale $I(H\beta) = 100$. See Fig. 2. NGC 6629.—Note that the [S II] $\lambda\lambda$ 6717/6730 ratio is poorly determined, so that no really good electron density is available, and N(S) is poorly determined. We choose $T \approx 8900$ K, $N_e = 1260$ cm⁻³.

IC 4732.—Our data do not support the low density, $N_{\epsilon} \approx 2700 \text{ cm}^{-3}$, reported by Shaw and Kaler 1985. The [S II] lines indicate a much higher density. Accordingly, we have adopted $T_{\epsilon} = 13,000 \text{ K}$, $N_{\epsilon} = 12,500 \text{ cm}^{-3}$.

NGC 6781.—In this extended object the left and right slots were treated separately, the left slot being compared with the model. In spite of its low surface brightness (the relative exposure is equal to 80 [Curtis 1918]), reasonably good data appear to have been found for this object. Table 2D gives data for the brightest position in the nebula. The data for the right slot (not compared with the model) are given in Table 3.

NGC 6804.—Because of the faintness of this object, only a few lines are observed. No model was attempted; abundances were found from ionic concentrations by approximate conventional extrapolation formulae, with $T_{\epsilon} = 12,000$ K and $N_{\epsilon} = 1000$ cm⁻³ (Kaler).

NGC 6807.—We take $N_e = 4000$ cm⁻³ from Shaw and Kaler 1985, since the [S II] line ratio is not determined accurately.

NGC~6833.—Analyses were carried out with $10,000 < N_e < 40,000~{\rm cm}^{-3}$; $N_e \approx 20,000~{\rm cm}^{-3}$; $T_e = 14,160~{\rm K}$ from [O III] seems the best compromise. See Fig. 1.

M1-75.—An interesting object, unusually rich in N and He. It is difficult to reproduce the strong He II λ 4686 and [Ne V] λ 3426.

NGC 6881.—Curiously, [Ne v] \(\lambda 3426 \) seems strong, while \(\lambda 4686 \) looks abnormally weak for a nebula of high excitation; [O II] \(\lambda 3727 \) is strong.

NGC 6879.—For this object and also NGC 6881, the measured intensities seem to be in good accord with those of Kaler, Pratap, and Kwitter 1987 when allowance is made for the fact that they measured the integrated light of the entire nebular image, while we used a 2"×10" slot centered on the nebula. Ionic concentrations and electron temperatures are in good accord, but the electron density is poorly determined in NGC 6879.

NGC~6891.—Our adopted model density $N_e = 2500~{\rm cm}^{-3}$ may be too high for this frequently observed, rather bright nebula. Both Maciel and Pottasch 1984 and Shaw and Kaler 1985 suggest $N_e \approx 2500$. The central star has received a great deal of attention (see Acker *et al.* 1982; Heap 1977; de Freitas-Pacheco, Codina, and Viadana 1986).

NGC~6894.—No suitable theoretical model yet has been found. There is a large discordance between our N abundance and that found by Kaler 1985a. Here $\lambda 3727$ and $\lambda 4686$ are strong. The excitation class, 8, is ambiguous.

M1-78.—An extremely high extinction is indicated for this object. The close agreement of the ICF and model results is probably fortuitous.

K3-60.—The very large interstellar extinction limits the accuracy attainable for this nebula.

NGC 7354.—See also Shure et al. 1983, who have found from infrared lines a higher density, $N_c = 5600$, than we had used.

ning of this section. Errors arising from the response function and atmospheric extinction appear to be of the order of 4%. The total errors are smallest for the stronger lines, typically amounting to 5%–10% for $I \geq 40$, 10%-20% for 10 < I < 40, 20%-30% for 1 < I < 10, and 25%, 50%, or even greater for I < 1.0, except for faint nebulae, where the errors can be larger. The σ -values are useful in flagging lines for which the random errors are serious; in southern and low surface brightness planetaries, the line $\lambda 4363$ is often subject to a large uncertainty. Comments following Table 2 call attention to factors that may limit the accuracy of results for individual nebulae. Table 3 gives some additional data for NGC 6439, Hubble 6, and NGC 6781.

Peimbert, Peña, and Torres-Peimbert (1986) suggest that the detector used on an image-tube scanner is a nonlinear device, the intensity I being related to the instrumental signal S by an expression of the form $I \propto S^k$. Now k < 1. If we

express the reduced signals in terms of $H\beta$, the stronger lines will be measured as too strong, the weaker lines as too weak. The response function will also be affected, and one will derive spuriously high interstellar extinction coefficients. In particular, there will result an electron temperature that is too low. The derived abundances will be affected as noted in § V.

We tested this hypothesis with our data in two ways. First, we compared the measured I(5007)/I(4959) ratio with the expected value. Next, we compared the He II $\lambda 4686$ Paschen- α line with the Pickering lines $\lambda\lambda 5411$ and 4541. The [N II] $\lambda 6584/\lambda 6548$ ratio is not usable, since the line $\lambda 6548$ is not well enough deconvolved from H α . The "best" value of the theoretical $\lambda 5007/\lambda 4959$ ratio lies between 2.88 and 2.90 (see, e.g., Czyzak, Keyes, and Aller 1986). The mean observed ITS value is 3.01 ± 0.02 . Measurements of this ratio by photoelectric photometry of 45 PNs gave 2.98 (Czyzak, Keyes, and Aller 1986). If we take the theoretical ratio as valid, we find

TABLE 3 Additional Data for NGC 6439, Hubble 6, and NGC 6781 A. NGC 6439

λ (Å)	Identification	I	σ
3340	[Ne v] + O III	13	24
3428	[Ne v]	5.4	24
3444	O III O	17	38
3760	O III	2.3	12

B. Hubble 6

λ			λ		
(Å)	Identification	I	(Å)	Identification	I
5592	. О п	0.69	8467	. P17	0.054
5631	. [Fe VI]	0.28	8502	P16	0.29
5670	. [Fe vi]	0.72	8545	P15	0.46
8236	. He ı	0.52	8598	P14	0.53

C. NGC 6781^a

λ (Å)	Identification	I	λ (Å)	Identification	I
4861 4959 5007 6548	Ηβ [Ο 111] [Ο 111] [N 1 1]	100 94.1 350 208	6563 6584 6717 6730	[N II] [S II]	285 660 38.4 41.2

^aThe data in Table 2D pertain to the left slot; these were compared with the models. The right-slot intensities (not compared with the model) are given here.

k=0.96, somewhat larger than the corresponding value found by Peimbert, Peña, and Torres-Peimbert (1986). The $\lambda 4686/\lambda 5411$ and $\lambda 4686/\lambda 4541$ ratios may be calculated exactly for a given T_{ϵ} . Thus, we can predict I(4686) from I(5411) and compare it with observed I(4686). Excluding the data for H1-59 and M1-42, which were subject to large errors, we find $I_{\text{pred}}(4686)/I_{\text{obs}}(4686)$ to be 1.00 ± 0.05 . The comparison for $\lambda 4541$ is less accurate but also gives no support for a systematic relative line intensity error. In § V, however, we will examine the influence of such a nonlinear response effect upon the derived abundances. For this comparison we choose k=0.96.

IV. ANALYSIS OF DATA

The electron temperatures are found from the [O III] $\lambda4363/(\lambda4959 + \lambda5007)$ ratio and from the [N II] $\lambda5755/\lambda6584$ ratio (if available). The largest source of uncertainty here is in the $\lambda\lambda4363$ and 5755 measurements. The electron density is often estimated from the [S II] $\lambda6717/\lambda6730$ ratio or from the surface brightness (plus some assumption about the nebular distance). The [S II] lines are most likely to originate in regions of low ionization or even in interfaces between ionized and neutral (H I) regions. Thus, they do not necessarily give us the proper electron densities for the O⁺⁺ and Ne^{+,+} zones. It is always preferable to use N_e found from the [O II] $\lambda3726/\lambda3729$ ratio (M. Barlow 1986, private communication), but unfortunately it is not possible to resolve these lines with the spectral dispersions available on the ITS.

In principle, a further clue should be provided by the ratio of the auroral to the nebular type of transition in [O II], i.e., $\lambda 3727/(\lambda 7319 + \lambda 7330)$, although the measured line ratio would be affected by wavelength-dependent photometric errors and by any uncertainty in the interstellar extinction. An even more aggravating circumstance is the fact that the $2p^3$ 2P term and even the $2p^2$ 2D term may not be populated exclusively by collisional excitation as has been usually assumed. In low-excitation, low T_e nebulae, particularly, dielectronic recombination of O^{++} ions which produce excited O^+ ions may play an important role (Rubin 1986). Consequently, if one interprets the $\lambda 3727/(\lambda 7319 + \lambda 7330)$ ratio as involving only collisional excitations to the 2P and 2D terms, the derived N_e and/or T_e will be too high. This effect has been noted by Barker (1978) and in the present work.

Once values of N_e and T_e are adopted, the calculation of ionic concentrations is straightforward (see, e.g., Seaton 1960; Aller and Liller 1968; Osterbrock 1974; Aller 1984). The largest source of uncertainty in the derived ionic concentrations arises from the error in T_e , although uncertainties in N_e can play a role in lines involving p^3 configurations. Atomic parameters may still need improvement for some ions in $3p^n$ configurations.

We employ the same approach in analyzing the data as has been described previously (Shields et al. 1981; AC 83). We calculate a theoretical nebular model to represent the line intensities, and then we use this model to obtain the ionization correction factors (ICFs). The agreement between the model abundances and those derived with the aid of ionic concentrations and model ICF factors gives us a critique of the process, but it must be emphasized that although an excellent fit may be a necessary condition for obtaining good abundances, it is not a sufficient condition.

Let us illustrate the method as applied to one planetary nebula, NGC 6439, excitation class 7 (see Table 1). For the emergent flux from the central star, we use a Kudritzkitype model (Husfeld et al. 1984) with $T_{\text{eff}} = T(*) = 85,000 \text{ K}$ and $\log g = 4.72$. From the nebular diagnostics we find $T_{\epsilon}([{\rm O~III}]) = 10,560~{\rm K},~T_{\epsilon}([{\rm N~II}]) = 11,260~{\rm K},~{\rm and}~N_{\epsilon} \sim 4000$ cm⁻³. For the nebular model we used, $N_{\rm H} = 3550~{\rm H}$ atoms cm⁻³, which yields $\langle N_e \rangle = 4028 \text{ cm}^{-3}$ for the emitting volume of assumed uniform density. This nebula appears to be radiation-bounded, i.e., a full Strömgren sphere. The mean predicted T_s ([O III]) in the radiating volume is 10,800 K. Table 4 compares observed and predicted intensities. The near-ultraviolet [Ne v] lines were detected but could not be measured with requisite accuracy. The most serious discordance is found for argon. If we fit [Ar IV] $\lambda 4740$ approximately, we predict too large an intensity for [Ar III] λ 7135. We suspect that this discordance may arise from errors in atomic parameters or effects of concentrations in dense blobs. Columns (1)-(4) in Table 5 give the lines utilized, their observed wavelengths, the observed intensity as corrected for interstellar extinction, and $N(\text{ion})/N(\text{H}^+)$ denoted as N(ion) in the table. This quantity is calculated from I, N_e , and T_e , using a special computer program which solves the equations of statistical equilibrium to obtain the level populations. Then it uses the observed intensities to derive the total number of ions in the ground configuration, which is closely equivalent to the total number of ions of that species with respect to the number of H ions. A

ALLER AND KEYES

 $\label{table 4} TABLE~4$ Representation of Line Intensities in NGC 6439

λ			I	λ			I
(Å)	IDENTIFICATION	Observed	Predicted	(Å)	Identification	Observed	Predicted
5876	Не 1	16.0	15.2	3868	[Ne III]	126	133
4471	He 1	5.3	5.5	4726	[Ne IV]	0.6	0.2
4686	Не 11	22.3	22.8	5517	[Cl m]	0.9	0.7
4267	Сп	0.65	0.76	5537	ີ່ [Cl III]	0.86	0.8
6583	N II	119	121	6717	[S II]	5.8	7.2
5755	NII	2.0	2.9	6730	โร เป	10.0	10.4
3727	O 11	61.4	69.4	6312	[S III]	2.2	2.1
4959,5007	O III	1621	1707	7135	[Ar III]	5.8	10.5
4363	O III	9.1	10.4	4740	[Ar IV]	5.3	4.9

TABLE 5 Analysis of NGC 6439

	λ					N(element)		
Ion	(Å)	I	N(ion)	$\sum N_i(\text{ion})$	ICF	ICF Method	Model	
Не 1	∫5876	16	0.110					
	(4471	5.3	0.121	0.14	1.0	0.14	0.132	
Не и	4686	22.3	0.019					
N II	6583	119	1.9(-5)	1.9(-5)	16.4	3.12(-4)	2.9(4)	
О п	3727	61.4	2.6(-5)				•••	
О III	{4959 5007 }	1621	3.4(-4)		1.21	4.43(-4)	4.6(-4)	
Ne III	3868	126	9.2(-5)	9.2(-5)	1.27	1.17(-4)	1.25(-4)	
S 11	$\begin{cases} 6717 \\ 6730 \end{cases}$	$\frac{5.6}{10.0}$	4.7(-7)	3.97(-6)	3.62	1.44(-5)	1.4(-5)	
S 111		2.2	3.5(-6)					
Cl III	{5517 5530	$\left. \begin{array}{c} 0.9 \\ 0.86 \end{array} \right\}$	1.0(-7)	1.0(-7)	4.2	4.2(-7)	3.6(-7)	
Ar IV	7135	5.8	4.5(-7)					
Ar IV	4740	5.3	1.8(-6)	2.28(-6)	1.11	2.53(-6)	3.0(-6)	
Ar v	7005	0.29	2.5(-8)				•••	

total of 15 levels can be accommodated in the program. Column (5) gives the sum of the observed ions, $\sum N_i$ (ion) in units of $N(H^+)$. Column (6) gives the ionization correction factor, ICF= $1/\sum x_i$, where x_i is the ionic fraction in an observed stage i, and the summation is taken over all observed ionization stages. Columns (7) and (8) compare the thus derived abundances with those adopted for the model. The finally adopted values of $\log N$ in Table 6 represent the presumed "best" choice based on the two approaches. For most elements in NGC 6439, the two sets of calculations differ by less than 10%. Exceptions are Cl and Ar, where we deal with $3p^3$ configurations, where the atomic parameters may be in need of revision, and clumpiness in the density distributions may complicate the analysis. Note that we have assumed a sphere of uniform density. One could use a shell, but various trials suggest that the changes in the ICFs would not be significant.

In AC 83, comparisons between model and "ICF method" abundances for each nebula, as well as numerous diagnostic diagrams, were presented. We shall not list results in such detail here, but instead in Table 6 give the equivalent of Table 29 in AC 83. Successive columns in Table 6 list the object followed by the logarithmic abundances of He, N, O, Ne, S,

Cl, and Ar on the scale log N(H) = 12.0. Q denotes the expected quality of the overall determinations; the expected errors, $\Delta \log N$ may be correlated with the letters as in AC 83, viz., $A = \Delta \log N \le 0.1$, $B = 0.1 < \Delta \log N < 0.2$, $C = 0.2 < \Delta \log N < 0.3$, $C - = 0.3 < \Delta \log N < 0.5$, while D means that we have little better than an order of magnitude. A colon after an element's abundance in columns (3)–(8) indicates only an order-of-magnitude result.

Column (10) denotes the model adopted for the stellar flux; K refers to a Kudritzki-type model (Husfeld *et al.* 1984), while BB denotes a Planckian distribution. Column (11) gives the assumed effective temperature of the star, $T_{\rm eff}$, in units of 1000 K, while log g denotes the logarithm of the surface gravity, g (in units of cm s⁻²). Column (12) lists notes relevant to the abundance determinations; these notes are intended to condense extensive discussion. Frequently, discordances occur for ions represented by lines of the $3p^3$ configuration, viz., S, Cl, and Ar. Some of the difficulty may be attributed to the existence of dense blobs and condensations which are not handled in the theoretical models. Additional notes are given for some of the individual nebulae. Comparisons are given with results of other workers, and distinguishing characteristics of some of the objects are noted.

TABLE 6
Adopted Elemental Abundances for the Nebulae

Object He	N	0	Ne	S S	C1	Ar	Q	$T_{\rm eff}$	log g	Notes
- Object Tie	111		110			- Au	<u> </u>	eff	log g	Notes
M1-4 11.02	7.96	8.50	7.73	6.7	5.15	6.18	В	K 80	4.72	1,2,3,4
M2-2 11.0:	7.95	8.43	7.77	• • •		5.95	C –	K 80	4.72	2,3
K3-67 11.04	8.16	8.26	7.62	6.7	5.18	6.0	В	K 62.5	4.72	1,4,5
K3-68 10.99	7.56	8.12	7.60			6.30	C –	K 115	5.25	6
M2-6 10.98	7.68	8.56	7.77	6.7		6.25	C	K 50	3.8	6,7
M4-3 10.98	8.26	8.68	7.92	7.04		6.20	C	K 50	3.8	3,4
M2-10 10.99	8.43	8.73	8.08	> 6.3		> 6.4	D			6,8
H1-18 11.24	8.96	8.71	8.08	7.09		6.92	C –	K 62.5	4.7	6,7,9
NGC 6369 11.12	8.08	8.46	7.61	6.78	5.42	6.62	В	K 75.0	4.7	4, 9, 10
H1-23 11.15	8.58	8.76	7.93	6.98		6.74	C	K 50.0	3.8	6,7
Hubble 4 11.10	8.45	8.68	7.96	7.29	5.70	6.5:	Α	K 85	4.7	2,3,4
H2-18 11.10	8.7:	8.52	7.69	7.01		6.30	C	K 77.5	4.7	2,6
M3-15 11.03	8.08	8.41	7.48	6.7:		6.5	G	K 62.5	4.7	1,6,9
Hubble 5 11.16	9.06	8.82	8.09	6.95	5.60	7.00	В	BB 150		1,4,5,10
NGC 6439 11.13	8.46	8.65	8.06	7.15	5.59	6.45	Α	K 80	4.72	4
Cn 2-1 11.00	8.66	9.22	8.58	7.51	5.7	6.77	В	K 50	3.8	5,6,10
Hubble 6 11.04	8.65	8.71	8.00	7.30	5.41	6.70	В	K 85	4.72	4, 5, 10
M2-21 11.10	7.95	8.49	7.76	6.61		6.01	B +	K 82.5	4.72	4
M3-20 10.99	7.73	8.70	8.0	6.74	5.21	6.08	В	K 50	3.8	1,4
M2-23 11.00	7.68	8.40	7.60	6.6		5.75	C	K 50	3.8	1,3,10
IC 4673 11.16	8.45	8.72	8.15	7.26		6.9:	В	K 107.5	5.15	1,4,10
M1-35 11.21	8.79	8.48	7.63	6.75		6.63	B-	K 62.5	4.78	2,4,6
M1-42 11.23	8.91	8.67	8.13	7.28	5.85	6.66	C	K 81	4.7	6,7
H1-59 11.00	8.67	8.63	7.90	7.65		6.79	B-	K 115	5.25	1,11
M2-30 11.08	8.06	8.75	8.07	7.11		6.68	В	K 100	4.72	1,4,10
NGC 6567 11.03	7.78	8.50	7.78	6.76	5.00	5.9:	A –	K 75	4.72	2,3,5
M2-33 10.97	7.60	8.62	7.90	6.46		6.42	В	K 50	3.8	11
$M1-44 \dots > 10.7$	8.1:	8.2		> 6.45		> 5.4	D			6,8
NGC 6578 11.04	8.04	8.75	8.18	6.98	5.41	6.5	В-	K 50	3.8	2,3,4
NGC 6620 11.06	8.65	8.84	8.18	7.1	5.48	6.60	В	K 85	4.72	1,4
NGC 6629 10.94	7.76	8.60	7.77	6.55		6.6	В	K 50	3.8	1
IC 4732 11.03	7.94	8.42	7.71	6.79	4.9	5.98	В	K 62.5	4.72	10
NGC 6781 11.11	8.35	8.64	7.83	7.0		6.60	C	K 62.5	4.72	4
NGC 6804 11.14		8.5	7.7			> 5.6	D			8, 10, 11
NGC 6807 11.09	7.92	8.56	7.88	6.97		6.78	C	K 62.5	4.72	3,4,10
Me 1-1 11.10	8.60	8.74	8.15	7.11		6.81	В	K 62.5	4.72	1.3
NGC 6833 11.01	8.13	8.05	7.34	6.20		5.7:	B –	K 62.5	4.72	1,2,3,10
M1-75 11.27	9.03	8.79	8.23	7.32		6.84	В	BB 160		1,4
NGC 6881 11.06	8.58	8.74	8.03	7.05	5.73	6.65	В	K 115	5.25	4,5
NGC 6879 11.02	7.89	8.61	7.95	6.6	5.12	6.28	В	K 50	3.8	1,4
NGC 6891 11.00	7.68	8.65	7.90	6.36	4.96	6.11	В	K 50	3.8	3,4
NGC 6894 11.00	8.2	8.6	7.97				Ď			8
M1-78 10.98	7.74	8.07		6.40		6.15	Č-	K 50	3.8	1,4,10
K3-60 11.11	8.27	8.63	7.95	6.9		6.42	Č-	K 115	3.8	1,10,11
K3-61 11.06	9.08	8.69	7.93	7.26		6.52	Č	K 62.5	4.7	1,11
Me 2-2 11.16	8.84	8.32	7.63	6.50	4.70	6.0:	Č	K 57.5	4.7	3,4
NGC 7354 11.11	8.52	8.60	7.81	7.0		6.60	В	K 115	5.25	3, 4
M1-80 10.96	8.31	8.59	7.72	6.72		6.12	В	K 113	5.0	1,4
1411-00 10.90	0.51	0.57	1.12	0.72	• • • •	0.12	D	1 100	5.0	1,7

Notes.—Let $\Delta(\text{el}) = \log N(\text{el})_{\text{ICF}} - \log N(\text{el})_{\text{model}}$. (1) $\Delta(S) \geq 0.15$. (2) $\Delta(\text{Ar}) \geq 0.15$. (3) If we fit [Ar III] $\lambda 7135$, [Ar IV] $\lambda 4740$ is predicted to be too strong. (4) The agreement between predicted and observed intensities and between the model and the ICF method abundance determinations generally is good, with exceptions as noted in notes 1, 2, 3, and 5 or remarks for the individual nebulae. (5) $\Delta(\text{Cl}) \geq 0.15$. (6) The electron temperature, T_e , is uncertain. (7) We rely essentially on the nebular model, since [O III] $\lambda 4363$ is poorly determined or not even seen. (8) Abundances are estimated by extrapolation methods (see, e.g., Barker 1983), usually because the level of excitation is so low no model is available. (9) The intensities of $\lambda 3727$ and neighboring lines are poorly determined because of the large interstellar extinction, the faintness of the nebula, or both. (10) The observed intensity of [O II] $\lambda \lambda 7319,7330$ is greater than predicted, probably as a consequence of dielectronic recombination (Rubin 1986). (11) The observational scatter is above average because of the faintness of the nebula.

We have also examined the consequences of adopting the hypothesis that $I \propto S^k$, with k = 0.96. Rigorously, one should repeat the entire reduction procedure with this additional constraint. In view of the uncertainty in the value of k, such a large enterprise is not justified. We note that the interstellar extinction was chosen so that the hydrogen lines would fit the theoretical Balmer decrement. For example, we can recalculate $T_{\epsilon}([O III])$ by comparing $\lambda\lambda 4959$ and 5007 with H β and $\lambda 4363$ with H γ , i.e., we do not directly compare S(5007) with S(4363), since interstellar extinction must be taken into account. Since the oxygen abundance depends primarily on the intensities of $\lambda\lambda 4959$ and 5007, its value will be reduced for two reasons. The [O III] lines are almost always stronger than $H\beta$, so their corrected intensities will always be lowered. The electron temperature will be increased, because $\lambda 4363$ is always weaker than Hy and its corrected intensity will be larger. Thus, the ratio [I(4959) + I(5007)]/I(4363) will be lowered, and T_{ε} will be increased. These ΔT_{ε} corrections range from about 100 K to as much as 1400 K in extreme cases. The neon abundance always tends to be reduced, primarily because of the increased T_{ϵ} value. On the average, we find that abundances of other elements, that depend on weak lines, will tend to be slightly increased. With k = 0.96, the mean changes in the sense N(k = 0.96)/N(k = 1.0) are as follows: He, 1.08 ± 0.05 ; N, 1.01 ± 0.09 ; O, 0.85 ± 0.09 ; Ne, 0.83 ± 0.12 ; S, 1.06 ± 0.13 ; Cl, 1.03 ± 0.23 , and Ar, 1.06 ± 0.12 . In the remainder of our discussion, we have not included these effects, since the determination of the value of k is so very uncertain.

V. DISCUSSION

In this section we consider the mean abundances, and mean abundance ratios, and the spread or dispersion of "observed" abundances, being mindful of the fact that some of this dispersion arises from errors of observation. Inaccuracies in electron temperatures will have a major effect on derived chemical composition. We then examine some of the implications for an enrichment of the interstellar medium by the products of nucleosynthesis, particularly for C, N, and O.

Table 7 gives the mean abundances for the present sample of planetaries. We have excluded nebulae of quality D analyses, viz., M2-10, M1-44, NGC 6804, NGAC 6894, and all entries flagged by a colon. Successive columns give for each element the number of data values, the mean value of the abundance in the nebulae and the dispersion in the mean

thereof, solar abundances, all on the scale $N({\rm H}) = 10^{12}$, and the mean value of the ratio with respect to oxygen for both nebulae and the sun. The solar abundances of C, N, and O are taken from Lambert (1978). For Ne, S, Cl, and Ar the solar abundances are from Aller (1987) and references quoted therein.

One might subdivide the material further, e.g., discuss the statistics of N-rich objects, or discuss nebular chemical composition characteristics as a function of population type or distance from the Galactic center, in which instance one must address the troublesome problems of nebular distances. We defer these particular topics to a later paper. Here we concentrate on the abundance distributions of individual elements in the sample.

We deem it instructive to consider also additional planetaries for which data are to be found in the literature. In selecting published analyses, we have emphasized those which have employed model nebulae for abundance determination (or have used models to estimate contributions from nonobserved stages of ionization), or which have (as in the work of Barker) utilized a number of selected areas in extended objects and have thereby obtained reasonable estimates of missing ionization stages. We combine these data with those employed in the construction of Table 7 to obtain mean abundance estimates for a broader sample. Thus, Table 8 gives mean abundances and ratios from a sample containing the data described in this paper plus data from AC 83 updated and extended by material from other sources as detailed in the notes to the table.

Carbon abundances can be determined from the ultraviolet lines C III $\lambda\lambda 1906,1909$ and C IV $\lambda\lambda 1548,1550$, which have been measured in many nebulae with the International Ultraviolet Explorer (IUE). They have also been derived from permitted ionic carbon lines, particularly C II A4267, although abundances estimated from this line (interpreted as a pure recombination feature) often tend to exceed those found from the ultraviolet collisionally excited transitions (see, e.g., the discussions by AC 83 and particularly those by Barker 1984, 1985 and by Kaler 1986, who examined the important role of the electron temperature in the C III zone). We give $\langle N(C) \rangle$ and $\langle N(C)/N(O) \rangle$ for the sample of 29 nebulae for which only the ultraviolet data are used. The larger sample (49 nebulae) includes determinations from both the ultraviolet and 4267 Å lines (see Fig. 3). Notice that the mean values are raised substantially when the 4267 Å data are included.

TABLE 7

Mean Abundances and Abundance Ratios for 44 Planetary
Nebulae Compared with Corresponding Solar Values

Element	n	Mean Abundance in Nebulae	Solar Abundance	Mean Ratio $N(\text{element})/N(\text{oxygen})$ for Nebulae	Solar Ratio
N	44	$(3.06 \pm 0.47) \times 10^8$	0.98×10^{8}	0.71 ± 0.11	0.112
O	44	$(4.30 \pm 0.33) \times 10^8$	8.3×10^{8}	•••	
Ne	44	$(0.89 \pm 0.09) \times 10^{8}$	1.12×10^{8}	0.20 ± 0.01	0.135
S	42	$(1.20 \pm 0.14) \times 10^7$	1.7×10^{7}	0.028 ± 0.004	0.020
C1		$(2.86 \pm 0.45) \times 10^{5}$	3.1×10^{5}	$(0.60\pm0.08)\times10^{-3}$	0.38×10^{-3}
Ar		$(3.22 \pm 0.33) \times 10^6$	3.7×10^{6}	$(0.76 \pm 0.07) \times 10^{-2}$	0.45×10^{-2}

TABLE 8 __ Mean Abundances and Abundance Ratios for an Extended Sample of Planetary Nebulae

Element	n	Mean Abundances	Mean Ratio $N(\text{element})/N(\text{oxygen})$	Solar Ratio
C	29ª	$(5.52 \pm 0.92) \times 10^8$	1.29 ± 0.19	0.56
	49 ^b	$(6.95 \pm 0.70) \times 10^{8}$	1.50 ± 0.14	
N	101	$(2.43 \pm 0.25) \times 10^8$	0.60 ± 0.08	0.118
0	104	$(4.43 \pm 0.19) \times 10^8$	•••	
Ne	102	$(1.03 \pm 0.06) \times 10^8$	0.24 ± 0.01	0.135
S	93	$(1.09 \pm 0.085) \times 10^7$	0.025 ± 0.0022	0.020
C1	60	$(2.08 \pm 0.18) \times 10^{5}$	$(0.47 \pm 0.04) \times 10^{-3}$	0.38×10^{-3}
Ar	98	$(2.91 \pm 0.19) \times 10^6$	$(0.69 \pm 0.05) \times 10^{-2}$	0.45×10^{-2}

SOURCES (Aller and Czyzak 1983 is denoted by AC 83).—NGC 40: Clegg et al. 1983; M1-1: Aller, Keyes, and Feibelman 1986a; IC 2165: Aller 1987; NGC 2440: Shields et al. 1981; NGC 2392: Aller and Czyzak 1981; IC 2448, 2501, 5315: Peimbert and Torres-Peimbert 1977; NGC 2818: Dufour 1984; NGC 2867: Aller et al. 1981b; NGC 3242; AC 83, Barker 1985; NGC 3918: Clegg et al. 1987; IC 3568: Harrington and Feibelman 1983; Me 2-1: Aller, Keyes, and Czyzak (1981); IC 4642: Penn et al. (1983); NGC 6302: Aller et al. 1981a; NGC 6445: Kaler, Czyzak, and Aller, 1972; NGC 6537: Feibelman Aller, and Keyes 1985; NGC 6720: Barker 1981, 1982, Aller 1984, p. 278; NGC 6741: Aller, Keyes, and Czyzak 1985; IC 1297: Aller, Keyes, and Feibelman 1986b; NGC 6818: Aller 1984, p. 279; NGC 6826: Barker 1978; NGC 6853: Barker 1984; NGC 7009: Barker 1983, Czyzak and Aller 1979, Perinotto and Benvenuti 1981; NGC 7027: Shields 1978, Perinotto, Panagia, and Benvenuti 1980, Péquignot and Stasińska 1980; NGC 7662: Harrington et al. 1982.

^aUV lines only.

^bUV lines and λ4267 data.

FIG. 3.—Distribution of carbon abundances and the C/O ratio. The solid lines depict the distribution of carbon abundances and C/O ratios as determined from the ultraviolet carbon lines observed with the IUE. The dashed lines include carbon abundances found from the C III and C IV ultraviolet lines. The arrow indicates the solar carbon abundance and C/O ratio. The average nebular C/O ratio exceeds the solar value.

Furthermore, in comparing Tables 7 and 8, we note that there exist a number of differences in the mean abundances and ratios, often exceeding the disparities one would expect from the dispersions. Part of this effect may arise from the fact that the literature "grab bag" contains perhaps a greater variety of nebulae including intrinsically bright and massive planetaries and objects of unusual composition such as NGC 6537 than did our present program.

We must emphasize that, in any case, taking "mean values" of PN chemical compositions is somewhat analogous to taking mean values of meteorite compositions. We are averaging over objects with different nucleogenesis histories, different progenitor masses, and different original chemical compositions. We are guided by the belief that only C, N, and possibly O are modified by element building in the energy-generating cores. The heavier elements, Ne, S, Cl, and Ar, are presumed to be untouched by the alchemy within progenitor stars. Kaler (1978) discussed the mean abundances of Ne, Ar, and Cl.

The solar carbon abundance, 4.7×10^8 , is definitely smaller than the mean nebular carbon abundance, 5.5×10^8 , deduced from the ultraviolet lines. There is a very large range in intrinsic carbon abundances from low values such as 0.38×10^8 for NGC 6537 (Feibelman *et al.* 1985) to high values such as 2.5×10^9 for NGC 7027 (Shields 1978). These two objects represent rather extreme cases, in one of which C and O appear to have been burned into N, and the other where results of the He burning into carbon have been ejected with relatively little further processing. The mean nebular C/O ratio is higher than the solar value (see Figs. 3a and 3b).

N 10

N 10

SOLAR

10

N 10

N

Fig. 4a

Turning to N, we again note a large spread in nebular abundances (see the block diagram in Figs. 4a and 4b). Some objects, such as M2-33 and IC 4634, appear to have little N; N/O $\sim 0.095-0.125$. Others such as NGC 2440 and NGC 6537 are N-rich, the N/O ratios being 6.4 and 5.4, respectively. The mean N/O ratios for both the new sample and the extended sample are considerably in excess of the solar value.

Our data reflect the well-known result that the nebular mean oxygen abundance is appreciably lower than the solar value. (See Fig. 5.) We can remove this discrepancy by invoking T_e fluctuations (Peimbert 1967; Rubin 1969; Dinerstein, Lester, and Werner 1985; Zuckerman and Aller 1986). For all except a very few objects on our list we do not have sufficient information to deduce $\langle \Delta T_e \rangle$, since the requisite infrared data are not available. If an agreement between solar and mean nebular O abundances is found by choosing an appropriate ΔT_e fluctuation, then Ne, S, Cl, and Ar will all be somewhat "overabundant" in the PNs. Perhaps this is the true explanation. Comparing the mean abundances for S, Cl, and Ar with the solar values, especially for the larger sample, we see that such a correction would work in the right direction.

For neon the mean nebular abundance (Table 8) agrees to about 10% with the solar value. The $\langle N(\text{Ne}) \rangle$ determination should be more reliable than for S, Cl, and Ar, since the coverage of ionization stages is better for Ne and the reliability of atomic parameters is greater. The spread in observed values (Fig. 6) is smaller than for other elements.

For S, Cl, and Ar, the spread is larger (see Figs. 7, 8, 9). Some of the dispersion must certainly be attributed to observational error, arising from the fact that we do not observe the predominant ionization stage of S, viz., S^{+3} . Furthermore, our measurement of $N(S^{++})$, being based on the weak auroral line [S III] $\lambda 6312$, is subject to a large uncertainty if T_{ϵ} is not accurately known. The Cl and Ar abundances, being based on [Cl III], [Ar III], and [Ar IV] lines, involve predominating stages of ionization, but here uncertainties in atomic parame-

FIG. 4.—Distribution of nitrogen abundances and the N/O ratio. The total sample appears to be enriched in N, and the average N/O ratio greatly exceeds the solar value. For both N and C the large element/oxygen ratios are at least partly to be attributed to a reduced O abundance.

FIG. 5.—Distribution of O abundances. The vast majority of PNs appear to be depleted in O, as previously noted by many observers. Some of the spread in this and other distributions is certainly to be attributed to observational errors, most notably errors in T_e . To bring the average O abundances up to the solar value, one could introduce temperature fluctuations, ΔT_e . Then the abundances of all other elements except He would be enhanced.

FIG. 6.—Abundance distribution of neon and the Ne/O ratio. The average neon abundance does not appear to be far from the solar value. Note that the spread in neon abundance values is smaller than for other elements, reflecting partly an intrinsically smaller spread and the fact that the ionization correction factors are better determined than for S, Cl, and Ar.

ters appear to play a role. Effects of N_{ε} fluctuations, especially knots and condensations, are particularly serious in $3p^3$ configurations. Compare the final two columns of Table 8. Note that the mean nebular S/O and Cl/O ratios only slightly exceed the solar value, while the Ar/O ratio is a little higher.

The mean nebular abundances of Ne, S, Cl, and Ar may well agree with solar values if we allow for uncertainties

arising from atomic parameters, plus some effects of T_{ε} fluctuations, but it is clear that if we adjusted ΔT_{ε} to force solar and nebular O abundances to agree, neon would be overabundant in the planetaries. Clearly, an intensive effort must be made to establish the scale of the ΔT_{ε} fluctuations.

This program was supported by National Science Foundation grant AST 83-12384 to UCLA. We are grateful for the

FIG. 7.—Abundance distribution of sulfur and the S/O ratio. This element shows a very wide dispersion, at least partly attributable to the fact that individual abundance determinations are subject to a larger error than for, e.g., Ne because the ionization correction factors are so uncertain. In most PNs, the bulk of the S must exist as S^{++} and S^{+3} . The S^{++} abundance is based on the auroral transition [S III] λ 6312 and is very sensitive to errors in T_{ε} . Again for S, Cl, and Ar we could bring the average abundances into accord with solar values by invoking a T_{ε} fluctuation, ΔT_{ε} .

FIG. 8.—Abundance distribution of chlorine and the Cl/O ratio. Although lines of [Cl II], [Cl III], and [Cl IV] are all observed in some PNs, in most instances the determination is based on the [Cl III] lines. For these lines a revision of the atomic parameters would appear to be desirable.

FIG. 9.—Abundance distribution of argon and the Ar/O ratio. As with Cl and Ar, much of the spread may be due to uncertainties in the abundance determination, since [Ar III] and [Ar IV] often do not yield concordant results, possibly as a consequence of inadequate atomic parameters.

help provided by the technical staff of Lick Observatory in obtaining the extensive series of observations herein described. We thank Stuart Pottasch and his colleagues for sending us data on Galactic bulge planetaries (including T_{ϵ} and N_{ϵ} determinations) in advance of publication. We adopted their T_{ϵ} values for several objects where $\lambda 4363$ was so weak as to be vanquished by Hg $\lambda 4359$. J. B. Kaler made a number of useful suggestions and supplied a preprint of a paper on

NGC 6879 and NGC 6881 by P. Pratap, K. B. Kwitter, and himself in advance of publication. Joe Toth assisted us in many of the reductions and model calculations. Mr. Robert L. O'Daniel edited and prepared the manuscript of this paper as quickly as was possible; his skill and patience are much appreciated. We are also grateful to an anonymous referee for helpful comments.

REFERENCES

Lambert, D. L. 1978, M.N.R.A.S., 182, 249.

Maciel, W. J. 1984, Astr. Ap. Suppl., 55, 253.

Maciel, W. J., and Pottasch, S. R. 1984, Astr. Ap., 130, 91.

Milne, D. K., and Aller, L. H. 1975, Astr. Ap., 36, 183.

Minkowski, R. 1965, quoted by L. H. Aller in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, ed. H. H. Voigt, Group VI, 1, 566 (Berlin: Springer-Verlag).

O'Dell, C. R. 1962, Ap. J., 135, 371.

_______. 1963, Ap. J., 138, 293.

Osterbrock, D. E. 1974, Astrophysics of Gaseous Nebulae (San Francisco: Freeman).

Freeman).

Peimbert, M. 1967, Ap. J., 150, 825.
______. 1978, in IAU Symposium 76, Planetary Nebulae, ed. Y. Terzian

(Dordrecht: Reidel), p. 215. Peimbert, M., Peña, M., and Torres-Peimbert, S. 1986, Astr. Ap., 158,

Peimbert, M., and Torres-Peimbert, S. 1977, Rev. Mexicana Astr. Ap., 2,

. 1983, in IAU Symposium 103, Planetary Nebulae, ed. D. R. Flower (Dordrecht: Reidel), p. 233.
Penn, C. S., Flower, D. R., Barlow, M. J., Seaton, M. J., and Aller, L. H. 1983, in IAU Symposium 103, Planetary Nebulae, ed. D. R. Flower (Dordecht: Reidel), p. 539. Péquignot, D., and Stasińska, G. 1980, Astr. Ap., 81, 121. Perek, L., and Kohoutek, L. 1967, Catalogue of Galactic Planetary Nebu-

lae (Prague: Academia Publishing House of Czechoslovak Academy of

Perinotto, M., and Benvenuti, P. 1981, Astr. Ap., 101, 88.
Perinotto, M., Panagia, N., and Benvenuti, P. 1980, Astr. Ap., 85, 332.
Pottasch, S. R. 1984, Planetary Nebulae (Dordrecht: Reidel).
Rubin, R. H. 1969, Ap. J., 155, 841.

_______. 1986, Ap. J., 309, 334.

Sabbadin, F. 1984a, M.N.R.A.S., 209, 889.

_______. 1984b, Astr. Ap. Suppl., 58, 273.

______. 1986, Astr. Ap. Suppl., in press.

Sabbadin, F., Bianchini, A., and Hamzaoglu, E. 1984, Astr. Ap., 136, 200.
Schneider, S. E., Terzian, Y., Purgathofer, A., and Perinotto, M. 1983, Ap. J. Suppl., 52, 399.
Seaton, M. J. 1960, Rept. Progr. Phys., 23, 313.

_____. 1979, M.N.R.A.S., 187, 73P.
Shaw, R. A., and Kaler, J. B. 1985, Ap. J., 295, 537.

Shaw, R. A., and Kaler, J. B. 1985, Ap. J., 295, 537.

Shields, G. 1978, Ap. J., 219, 565. Shields, G., Aller, L. H., Keyes, C. D., and Czyzak, S. J. 1981, Ap. J.,

Shure, M. A., Herter, T., Houck, J. R., Briotta, D. A., Forrest, W. J., Gull, G. E., and McCarthy, J. F. 1983, Ap. J., 270, 645.
Turner, K. C., and Terzian, Y. 1984, A.J., 89, 501.

Viadana, L., and de Freitas-Pacheco, J. A. 1985, Pub. Nat. Obs. Brazil,

Webster, B. L. 1983, *Pub. A.S.P.*, **95**, 610. Zuckerman, B., and Aller, L. H. 1986, *Ap. J.*, **301**, 772.

L. H. Aller and C. D. Keyes: Department of Astronomy, University of California at Los Angeles, Los Angeles, CA 90024