Medium- to large-sized True and Likely planetary nebulae from the DSH sample

M. Kronberger¹, Q. A. Parker², G. H. Jacoby^{1,3}, D. J. Frew², D. Harmer⁴, L. Huet¹, D. Patchick¹, T. Prestgard¹, and P. Le Dû¹ on behalf of the PNST^{*} and APO^{**} teams

¹ DSH collaboration, ² University of Hong Kong, ³ Lowell, ⁴ NOAO email: matthias.kronberger@gmx.at

* S. Charbonnel, P. Dubreuil, O. Garde, T. Lemoult, A. Lopez, and P. Le Dû ** T. Demange, R. Galli, T. Petit

Introduction

The Hong Kong/AAO/Strasbourg Hα planetary nebula database (HASH) [1] incorporates almost 300 true, probable and possible planetary nebulae (PNe) that have been identified since 2003 within the framework of the Deep Sky Hunters (DSH) project, and other amateur-based efforts [2-4]. Our sample covers all types of different PN morphologies, spectral properties, and evolutionary states. Estimated distances range from below 1kpc to extragalactic. This contribution focuses on all currently known medium- to large-sized PNe and candidates (optical diam > 2') in our sample.

Relation between angular diameters and distances for all PNe listed in [5]. The overplotted lines correspond to diameters of 1pc, 2pc and 3pc, respectively. Objects belonging to the DSH sample are highlighted. The plot shows that the sizes of DSH PNe are above 1pc in the majority of cases, translating into a size limit of 2' for possible Extended Local Volume members (d < 2kpc) in our sample.

Distribution of True and Likely PNe from the DSH sample with $\phi > 2'$ in an Aitoff–Hammer projection of the Galactic Plane. Other True and Likely PNe listed in the HASH database are shown for comparison. The average scale heights of the DSH and HASH samples with $\emptyset > 2'$ are 10.0° and 11.4°, with RMS dispersions of 11.8° and 18.8°, respectively.

Results

The table below summarizes all 28 True (T) and Likely (L) PNe from the DSH sample with optical diameters > 2' and lists the fundamental properties of the nebular shells and the CSPNe. Previously unpublished objects are highlighted in blue. Statistically derived distances were taken from [5]. The listed CSPN magnitudes were extracted from PanStarrs photometry. For 15 objects with available UV, optical and IR photometry, we determined E(B-V) and T by fitting the spectral distributions of the CSPNe with distribution functions of blackbody emitters corrected for the effects of interstellar extinction using the formalism in [6] and assuming R_v = 3.1. The GALEX UV fluxes were corrected by applying the revised photometric calibration from [7]. Effective wavelengths and zero points were taken from various resources. We note that two CSPNe (Pa 161 and Pa 153) have composite distribution functions with a hotter and a cooler component.

Object ID	RA [2000.0]	DE [2000.0]	۱ [°]	b [°]	Diam. ["]	D [kpc]	Status	Class	CSPN [mag]	Spectral Type	E (B-V) [mag]	Т [K]	Notes	
Fe 6	01 56 25.1	+65 28 30	129.61	+03.45	212 x 198		т	Rar	19.014g				= IPHASX J015624.9+652830 [1]	
Kn 132	04 14 21.2	+30 23 31	166.61	-14.78	158 x 152		L	Eaprs	-					
Kn 131	04 50 17.7	+41 54 53	162.94	-01.68	266 x 192		L	Bas	19.739g				misclassified as GX (Wein 92)	
Pa 153	05 09 07.5	+53 10 28	156.00	+07.75	156 x 154		L	Ra	18.081g		0.15	9500 + 80000	Composite	
Hu 4	05 28 21.0	+53 31 20	157.33	+10.32	150 x 150		L	?	-				Unclear CSPN identification	
Te 2	05 40 44.8	+31 44 31	177.06	+00.59	122 x 117	2.23	Т	Ras	21.169g					
Kn 63	05 42 06.7	+04 43 03	200.56	-13.10	388 x 358	1.94	Т	Rams	17.454g					
Pa 155	05 45 23.9	-11 45 49	209.59	-19.90	128 x 120		L	Ra	15.345g		0.14	100000		
Kn 62	06 23 55.4	+38 15 15	175.63	+11.46	126 x 126		т	Baps	18.421g		0.12	55000		
CaVa 1	06 52 51.4	+09 03 34	205.01	+04.44	480 x 435		т	Eas	18.093g					
KnAlv 1	08 04 04.4	-06 30 57	227.32	+12.94	1100 x 1060	0.87	т	Ear	15.963g		0.01	120000	= Fr 2-25 [1]	
Pa 163	09 24 55.2	-31 45 03	259.69	+13.29	220 x 216		L	Eas	18.315i		0.10	75000		
Pa 33	15 11 13.2	-42 10 23	328.82	+13.56	175 x 165	4.07	L	Eas						
Pa 5	19 19 30.5	+44 45 43	076.32	+14.11	157 x 154	2.27	Т	Eamrs	15.525g	PG1159? [8]	0.07	140000		
Pa 161	19 43 28.6	-13 44 59	039.66	-17.65	536 x 484		L	As	13.897g		0.05	5100 120000	Composite	
Te 1	19 57 22.3	+26 39 08	063.93	-01.22	146 x 140	1.81	Т	Bamps	20.473g					
Ju 1	20 15 21.4	+38 02 44	075.57	+01.72	240 x 240	2.09	т	Rr	19.413g					
Kn 121	20 42 01.9	+13 51 15	058.88	-16.97	486 x 371		L	As	15.428g	sdO [9]	0.04	75000		
Kn 45	20 53 03.9	+21 00 11	066.51	-14.90	145 x 138	2.85	т	Ears	18.270g		0.10	60000		
Pa 28	20 58 11.0	+33 08 33	076.89	-08.18	133 x 123		L	Eas	18.709g		0.17	45000		
Kn 24	21 13 37.7	+37 15 38	082.12	-07.81	190 x 190	1.63	т	Bams	19.189g					
Alv 1	21 15 06.6	+33 58 18	079.89	-10.27	270 x 270	1.82	Т	Es	18.153g		0.10	100000		
LDu 1	21 36 05.8	+50 54 09	094.58	-00.89	132 x 120	2.93	Т	Rar	21.358g					

CSPN fluxes and spectral distribution fits. Left: Pa 161; Right: Pa 153.

Object ID RA [2000 0] DF [2000 0]

Compilation of narrowband images of sample objects that were recently confirmed as True (T) or Likely (L) PNe. Unless otherwise noted, $R = H\alpha$, G,B = [O III].

Other PN candidates

The table below lists updated observational data of previously published PN candidates that do not meet the selection criteria above. In addition, we present in yellow new, yet unpublished PNe and candidates that are expected to be true, likely or possible PNe based on their morphologies, their spectral properties, and their characteristics at optical and infrared wavelengths.

[[°] h [°] Diam ["] Type Imaging Spectru

Object ID	RA [2000.0]	DE [2000.0]	l [°]	b [°]	Diam. ["]	Туре	Imaging	Spectrum	Notes
Hu 2	00 33 57.4	+74 18 39	121.72	+11.48	100 x 100	L	Huet	Le Dû 0.2-m	
Pa 154	01 01 25.0	+72 45 52	123.68	+09.90	83 x 80	L	KPNO 4-m		
Pa 59	01 14 39.0	+61 19 44	125.71	-01.41	26 x 22	L	KPNO 4-m		
Pre 8	01 26 36.0	+18 51 18	134.38	-43.23	116 x 111	Т	KPNO 4-m	PNST 0.5-m	
								DCT	
Kn 67	03 32 15.0	+21 39 43	165.54	-27.60	5.5 x 5.2	Т		DCT	
Kn 122	03 53 15.7	+09 56 34	179.20	-32.41	240 x 230	rej.	KPNO 4-m		(1)
Kn 133	04 54 33.7	+28 49 29	173.71	-09.24	31 x 30	L	KPNO 4-m		
Kn 135	05 36 31.1	-75 07 04	286.45	-30.94	stellar	L	LCO 1-m		(2)
PrKn 1	06 20 02.5	-18 37 32	199.43	-15.11	46 x 40	L	LCO 1-m		
Kn 134	06 45 55.0	-18 10 22	197.21	-09.35	9 x 9	Р	SHS		
Kn 71	08 16 42.5	-72 59 36	286.08	-19.96	80 x 80	L	LCO 1-m		
App 2	08 28 03.3	-14 58 55	095.19	+00.99	56 x 45	Т		PNST 0.35-m	(3)
DeGaPe 1	08 35 40.7	-43 48 31	262.49	-01.92	60 x 54	L_	APO team		
DeGaPe 2	09 00 17.7	-46 40 41	264.44	-00.35	102 x 96	L	APO team		

J								
Pre 3	11 35 38.2	-48 21 10	290.15	+12.62	60 x 56	L	LCO 1-m	(4)
Kn 136	17 25 22.3	-26 29 27	359.64	+05.08	7 x 7	Р	SHS	
Kn 128	17 36 20.4	-25 06 18	002.16	+03.77	10 x 10	Р	SHS	
Kn 129	17 39 17.0	-25 04 40	002.54	+03.22	11 x 8	Р	SHS	
Pa 157	17 47 08.6	+11 00 21	035.72	+19.20	38 x 36	Т	KPNO 4-m Le Dû 0.2-m	
Pre 13	18 17 30.9	-55 28 43	338.94	-17.54	34 x 24	L	LCO 1-m	
DeGaPe 28	18 18 20.0	-12 14 48	018.32	+01.64	12 x 10	L	APO team	
DeGaPe 50	18 29 10.5	-16 32 05	015.71	-02.69	104 x 54	ι.	APO team	
Pa 110	18 38 00.7	-12 41 07	020.12	-02.83	25 x 24	Р	KPNO 4-m	
Pa 19	19 05 08.7	+16 15 21	048.96	+04.38	35 x 32	Т	DCT	
Pa 159	19 15 06.6	-06 10 43	035.76	-08.07	151 x 141	rej.	KPNO 4-m	(1)
Pa 131	19 22 06.0	+11 32 41	046.69	-01.44	9 x 8	L	KPNO 4-m	
Pa J1934	19 34 33.6	+02 17 15	039.94	-08.53	238 x 188	rej.	KPNO 4-m	(1)
Ch 1	19 57 15.6	+34 47 19	070.86	+03.04	60 x 24	Т	Le Dû PNST 1-m	
Pa 164	19 57 23.2	+23 52 49	061.56	-02.66	105 x 50	L	KPNO 4-m	

Object ID	RA [2000.0]	DE [2000.0]	[°]	b [°]	Diam. ["]	Туре	Imaging	Spectrum	Notes	
Pa 143	20 04 14.9	+35 51 52	072.53	-02.39	43 x 33	Р	DCT		(5)	
Pa 144	20 06 31.9	+09 26 21	050.22	-12.00	33 x 27	L	KPNO 4-m			
Pa 146	20 29 09.5	+15 37 00	058.59	-13.41	101 x 89	L	KPNO 4-m			
Pa 147	20 29 23.6	+45 17 56	083.03	+03.70	56 x 50	Р	DCT	DCT	(6)	
Ra 67	20 36 07.2	+46 01 51	084.31	+03.19	9 x 9	L	KPNO 4-m			
Pa 3	20 46 10.5	+52 57 06	090.82	+06.11	72 x 58	rej.		DCT	(1)	
Hu 1	20 54 14.0	+58 51 20	096.17	+08.93	99 x 70	L	Huet			
Pa 166	22 03 05.9	+58 39 12	102.50	+02.62	33 x 31	P	KPNO 2.1-m			
Pa 162	22 12 15.2	-76 26 03	313.78	-37.14	300 x 300	rej.	LCO 1-m		(7)	
Pa 152	22 14 58.0	+66 32 59	108.23	+08.25	34 x 31	L	KPNO 4-m			
Гуре:			Notes:							
Г true PN			(1) ionize	ed ISM	(4) "So	utherr	n Soccerball"	(7) Plate	fault?	
Likely PN			(2) possik	N? (5) Dar	k nebi	ula + CG				
P Possible PN			(3) = KKR	(6) Pre-	-PN?					

[1] Parker, Q. A. et al., JPhCS 728, 3, 2008 (2016) [8] Garcia-Diaz, M. T. et al., AJ 148, 57 (2014) [3] Jacoby, G. et al., Pub. Ast. Soc. Aus. 27, 156 (2010) [5] Frew, D. J., et al, MNRAS 455, 1459 (2016) [7] Camarota, L., Holberg, J. B., MNRAS 438, 3111 [2] Kronberger, M. et al., A&A 447, 921 (2006) [4] Acker, A. et al., Rev. Mex. A&A 38, 223 (2012) (2014) [9] Geier, S. et al., A&A 600, 50 (2017) [6] Fitzpatrick, E. L., PASP 111, 63 (1999)

