Dans ce troisième volet de la série de quatre articles consacrés à l'initiation au logiciel PRiSM, nous allons nous intéresser à l'astrométrie des images numériques.

Initiation au logiciel PRISMOlivier Bautista - Association AIP(3/4)

carte du ciel », les astronomes photographient le ciel afin de le cartographier le plus précisément possible. Aujourd'hui encore le projet GAIA, mission de l'Agence Spatiale Européenne, lancé le 13 décembre 2013, va mesurer la position de plus d'un milliard d'objets célestes jusqu'à la magnitude 20, avec une précision si importante qu'il pourra mesurer le diamètre d'un cheveu à 1000 km ! Dans cet article, je vous propose de faire la même manipulation que les professionnels : de l'astrométrie sur vos clichés célestes avec le logiciel PRiSM et ceci à quelques cheveux près. Dans les articles précédents (AstroSurf n°66 et 67), nous avons vu comment faire les paramétrages de base du logiciel PRISM : entrer les coordonnées du site d'observation et gérer l'heure du PC afin qu'il pilote la monture le plus précisément possible. Nous avons aussi vu comment renseigner les entêtes des images avec le diamètre et la focale de notre télescope. Ces informations et leurs précisions sont primordiales pour la suite de notre manipulation, c'est pour cela que nous avons utilisé une tête GPS. Imaginez le gain de précision avec nos "outils d'amateur" par rapport aux astronomes professionnels de la fin du XIXe siècle ! Pour commencer, je vais vous présenter un outil puissant de PRiSM : la gestion de la carte du ciel.

La carte du ciel de PRISM

Voici l'outil qui va vous permettre de On retrouve préparer vos observations et vos (voir figure 3 prises de vues, mais aussi de piloter de recherch votre monture et de visualiser sur la carte la direction dans laquelle pointe gestion de votre télescope ainsi que le champ couvert par votre caméra. Dans la

Depuis l'année 1887, avec le projet « La barre de titres de la fenêtre "Le ciel" carte du ciel », les astronomes (voir figure 2), vous avez les photographient le ciel afin de le informations de la carte en cours : la cartographier le plus précisément possible. Aujourd'hui encore le projet (équinoxe 2000), le zoom en cours sur la carte, la position du centre du champ, la date, l'heure et le lieu. Sous la barre de titre, on retrouve un milliard d'objets célestes jusqu'à la magnitude 20, avec une précision si importante qu'il pourra mesurer le vous de la carte de titre, on retrouve un virtuel (voir figure 3).

Nous allons nous attarder sur les quatre dernières icônes du bandeau, ce sont les différents modes de pointage sur la carte. Quand le mode Flèche (bouton 1) est activé, ceci permet de centrer la carte à l'endroit où l'on clique, on peut zoomer avec la molette de la souris ou avec les deux premières icônes Zoom plus (bouton a) ou Zoom moins (bouton b). Le mode Jumelles (bouton 2), permet de sélectionner une zone du ciel et de faire un zoom rectangulaire directement dessus. Quand l'outil **Identification d'un objet** (bouton 3) est activé, l'icône de la souris prend la forme d'un viseur avec un petit carré au centre et quand on clique sur un objet de la carte, PRiSM ouvre une fenêtre d'identification avec toutes les informations astronomiques calculées et contenues dans les bases de données du logiciel sur l'objet en question. La dernière des icônes de ce groupe, en forme de peigne (bouton 4), est un outil de mesure sur la carte bien utile pour mesurer un déplacement du télescope sur la carte ou la taille d'un champ d'étoiles.

On retrouve dans la barre d'outils (voir figure 3) des fonctions classiques de recherche d'objets (bouton e), d'impression de carte (bouton f), de gestion de la taille d'affichage des étoiles (bouton g), de retour à la vue précédente (bouton h), de

Machine mécanique à faire des réductions astrométriques, fabrication 1900. Elle a servi jusqu'en 1960 à l'Observatoire de Floirac (Bordeaux)

rafraichissement de la carte (bouton **j**), de pointage en RA/DEC ou Alt-Az (bouton i) sur la carte et aussi des fonctions d'animation (bouton k). Pour les astronomes amateurs qui veulent des informations sur la mécanique de notre système solaire, deux outils sont à leur disposition : le premier calcule une table d'éphémérides des planètes (bouton 1) de notre système solaire pour une période paramétrable et le second est un outil de visualisation polaire (bouton m) de notre système solaire afin de visualiser la position des objets qui gravitent autour du soleil (comètes et astéroïdes inclus). La dernière fonction de cette barre d'outils n'est active que si le télescope est connecté à PRiSM, elle a alors la forme d'une cible circulaire jaune sur fond noir de (bouton n) et elle permet de centrer la

2. Fenêtre de la carte du ciel avec le menu des options d'affichage.

carte sur la position du télescope. Tous ces outils ne sont pleinement exploitables que s'ils sont finement paramétrés et ceci grâce à la fonction **Option d'affichage objets** (bouton c). Quand vous cliquez sur cette icône, une fenêtre avec neuf onglets s'ouvre ; on retrouve ici les réglages classiques d'un planétarium virtuel. Nous allons entrer dans certains de ces paramétrages afin de régler notre carte du ciel de façon optimale.

Onglet "Lieu et date"

Cet onglet permet la sélection du lieu d'observation, réglage de la date et de l'heure. Attention à bien cocher l'option Utiliser l'heure et la date de l'ordinateur quand vous voulez piloter votre monture avec PRiSM. On règle aussi dans cet onglet les paramètres d'animation de la carte.

Onglet "Ciel profond"

Cet onglet permet d'activer sur la carte les différents types objets appartenant à une vingtaine de catalogues NGC, IC, ABELL, MGC, UGC, BARNARD... représentant plus de 3 millions d'objets ! Deux choses importantes : on ne peut rechercher un objet dans la carte du ciel avec l'outil de Recherche (bouton e) que s'il est activé dans cet onglet et il ne faut pas trop activer d'objets car ceci peut lourdement

aussi activer le contour de la Voie lactée ainsi que celui des nébuleuses, ce qui est non seulement esthétique mais aussi bien pratique pour préparer ses cadrages.

Onglet "Affichage général"

Cet onglet permet de gérer les lignes et limites des constellations, les différentes grilles, les inversions Nord/ Sud et Ouest/Est, le mode Négatif, l'affichage des noms des objets et des étoiles, ainsi que la gestion d'une ligne d'horizon.

Onglet "Système solaire comètes"

Cet onglet permet de gérer : les affichages du Soleil, des planètes et de leurs trajectoires sur plusieurs jours, des phases de la lune, de faire la mise à jour du fichier des orbites des comètes via Internet, ainsi que leur affichage sur la carte du ciel. Allez dans le sousonglet **Compilation** pour mettre à jour en ligne le fichier comet.dat. La procédure incluse dans PRiSM ne marche plus car le fichier comet.dat sur le site de l'observatoire du KLET charger la carte du ciel et ralentir votre n'est plus au bon format. La solution recherches, des sélections et gérer

ordinateur ! Dans cet onglet, on peut se trouve sur le forum d'assistance de PRiSM. Donc, pour mettre à jour la base de données des comètes, ouvrez votre navigateur Web et allez chercher le fichier du jour sur le site du Minor Planet Center (source officielle):

http://www.minorplanetcenter.net/ iau/MPCORB.html

Dans votre navigateur, allez sur le lien Comets, cliquez sur le bouton droit de votre souris et sélectionnez l'option Enregistrer la cible du lien sous ... une fenêtre Windows s'ouvre et vous demande où enregistrer ce fichier. Il faut l'enregistrer dans le répertoire Mes documents/Prism/aster_comet, changez ensuite l'extension du fichier (sinon PRiSM ne le reconnaît pas). Le fichier que vous avez chargé s'appelle CometEls.txt et doit être renommé en CometEls.dat. Revenez dans PRiSM, cliquez sur le bouton Fichier, sélectionnez le fichier que vous venez de renommer et cliquez sur le bouton **Compiler**. Un message de succès de compilation s'affiche, PRiSM recharge la base et affiche le nombre de comètes dans le système (250 fin mars). On peut maintenant cocher la case Charger les comètes et ensuite faire des

l'affichage dans la carte du ciel. Le logiciel permet même de gérer vos propres fichiers d'orbites de comètes. Je vous renvoie au forum et à l'aide en ligne du soft pour plus d'informations sur les formats et procédures.

Onglet "Astéroïdes"

Cet onglet permet la recherche, l'affichage et la mise à jour des éléments d'orbites des astéroïdes. Il fonctionne de la même façon que la gestion des comètes. Cliquer sur le sous-onglet **Internet** et charger sur le site du MPC le fichier MPCorb.dat ou, sur le site du Lowel, le fichier astrorb.dat. Ici, la procédure est bonne et les fichiers sont au bon format ! Mettre les fichiers dans le même répertoire que pour les comètes et aller dans l'onglet Compilation, puis cliquer sur Compiler. Un message de succès de compilation s'affiche, PRiSM recharge la base et affiche le nombre d'astéroïdes dans le système (460 248 à la fin mars). On peut maintenant cocher la case Charger la base des astéroïdes et ensuite faire des recherches, des tris, des sélections et gérer l'affichage dans la carte du ciel. Attention, si vous cochez Afficher tous les astéroïdes, dans le sous-onglet Général, il y a du monde aux abords du plan de l'écliptique ! ce qui peut ralentir votre PC. N'hésitez pas à faire des tris et des zooms. Pour une plus grande précision d'affichage (notamment suite à une série de zooms) décochez la case Ne pas recalculer la position des astéroïdes lors d'un zoom ou d'un décalage.

Onglet "Tri"

Cet onglet permet de filtrer la magnitude et/ou la taille des objets, ceci pour différentes familles d'objets du ciel. Il permet aussi de filtrer suivant la distance à la terre en unité astronomique pour les objets du système solaire (comètes et astéroïdes).

Onglet "Etoiles"

Cet onglet permet de gérer l'affichage des étoiles en sélectionnant les nombreux catalogues d'étoiles inclus dans PRiSM (le Bright Star Catalog, les étoiles Variables : GCVS4, le SAO, HIPPARCOS, le catalogue de DRAPER, etc.). On peut aussi intégrer les catalogues GSC, USNO, UCAC et NOMAD1 qui seront utiles pour faire les réductions astrométriques de nos images. Pour cela, vous devez dans un premier temps charger ces catalogues sur Internet. Les liens sont sur le site de PRiSM :

http://www.prism-astro.com/fr/ Catalogues.html

Attention, certains catalogues sont énormes : le catalogue NOMAD contient 1,13 milliard d'étoiles dans les bandes B, V, R, J, H et K et il pèse 100 Go. Faites-vous un répertoire Catalogues et dans des sous-répertoires avec des explicites (ex : usno1, noms gscact, usnoa2) sans espace et sans caractères spéciaux (pas d'accent !), téléchargez les catalogues que vous voulez. Ensuite, dans les sous-onglets

Attention, ceci peut ralentir votre PC. GSC, USNO, UCAC et NOMAD1, définissez les chemins des catalogues en question. On peut faire le même paramétrage en passant par la barre de menu : Option, sous-menu Chemin des catalogues USNO/GSC et ATLAS, la procédure est bien plus détaillée.

Toujours dans sous-onglets de gestion des catalogues supplémentaires, faites des essais d'affichages des étoiles. Vous pouvez faire des tris par magnitude/ zoom, de bande R V B J H K pour l'USNO ou le NOMAD. Attention, si vous affichez plusieurs catalogues, ceci peut ralentir votre PC, faire des zooms. Si vous activez plusieurs catalogues, il ne faut pas être étonné de voir des étoiles portant le même nom (et donc deux mêmes étoiles provenant de deux catalogues différents) être décalées à l'affichage sur la fenêtre du ciel (surtout à zoom important). Les coordonnées provenant de catalogues non astrométriques (comme le GSC) sont plus ou moins précises contrairement à des catalogues modernes comme le catalogue Hipparcos. D'après le nom de l'étoile, on reconnaît facilement le catalogue de provenance. PRiSM ne peut être incriminé : ce dernier dessine l'étoile à la position indiquée par le catalogue et ne peut en aucun cas faire un choix délibéré entre les catalogues. Attention à ne pas conclure à la présence de deux étoiles, alors qu'en réalité il n'y en a qu'une. On peut limiter ce problème dans l'onglet Affichage général en cochant la case Etoiles séparées.

Carte du ciel en HD en négatif avec le contour des nébuleuses dans le Cygne.

Astrosurf-Magazine N°68 Mai/Juin 2014

Onglet "Atlas"

Cet onglet permet de rajouter deux bases de données images gratuites : l'atlas des Pises et le Buil-Thouvenot Atlas (BT-Atlas, 4700 images, 620Mo) qui est téléchargeable sur Internet à l'adresse suivante :

http://www.deverchere.com/ astronomie/catalogs/BT.zip

Cette fonction a perdu son intérêt avec la possibilité de charger en ligne des champs du DSS.

Je ne parlerai pas ici de l'onglet CCD/ Télescope, qui sera abordé lors du prochain article.

Menu contextuel

Nous avons fait le tour des outils de la carte du ciel, faisons un petit tour du côté du menu contextuel. Cliquez sur le bouton droit de la souris quand vous êtes sur la carte du ciel et le menu contextuel apparait (voir figure 5).

Le premier ensemble permet de gérer le niveau de zoom et l'horizon N, S, E, W ou Zénith que l'on affiche.

On trouve des fonctions de "copiercoller" de coordonnées et de remplissage de liste d'objets, qui sont bien pratiques. La fonction Réaligner les codeurs/position télescope est importante, car elle permet de synchroniser les codeurs de la monture sur la carte du ciel. Il y a aussi la fonction pour Déplacer le télescope sur ce point de la carte ou l'inverse Aller sur la position du télescope, qui

carte du ciel

6. Image de la galaxie NCG3521 du premier concours AIP

permet de centrer la carte sur la position du télescope dans le ciel. Il y a des fonctions de recherche d'objets autour du point cliqué sur la carte dans les bases de PRiSM ou en ligne sur le CDS. On trouve ici la fonction de chargement de champ du DSS au point cliqué sur la carte. Les réglages de cette fonction se font dans le menu Fichier / Rapatrier une image du DSS.

On peut faire une copie de la fenêtre de la carte du ciel, soit dans le "pressepapier" avec un facteur d'agrandissement pour récupérer une image de très bonne résolution pour une publication (voir la carte HD en négatif de la figure 4), soit dans une autre fenêtre pour essayer d'autres paramètres. On peut même sauver la fenêtre pour qu'elle s'ouvre exactement aux mêmes coordonnées dans le ciel et avec les mêmes réglages à la prochaine ouverture de PRiSM.

Certaines fonctions du menu contextuel ne s'activent que lorsque certaines conditions sont remplies, c'est le cas du deuxième bloc : la gestion de vos images, comme l'incrustation de ces dernières dans la carte du ciel. Pour que ce bloc du menu soit actif, il faut qu'une image réduite astrométriquement soit ouverte. Nous avons fini la présentation de la carte du ciel de PRiSM, passons maintenant à l'analyse de vos images.

Réduction astrométrique d'une image

Qu'est-ce qu'une réduction astrométrique d'image ? Quand on déplace le curseur de la souris sur une image, dans la barre d'état (en bas de la fenêtre de PRiSM), on peut voir la position X et Y du curseur sur l'image. réduction La astrométrique transforme les coordonnées X et Y des pixels de l'image en coordonnées sur le ciel (Ascension Droite et Déclinaison). Les applications sont nombreuses : on pourra ainsi trouver des objets très faibles sur l'image à partir de ses coordonnées prises dans une base de données, faire des recherches d'astéroïdes ou de comètes, voire afficher cette image dans la carte du ciel à sa vraie position dans le ciel.

Pour notre manipulation, j'ouvre une image de la galaxie NCG3521 du premier concours AIP (voir figure 6). Un rapide tour sur la carte du ciel montre que cette galaxie est dans la constellation du Lion et à deux degrés en dessous de l'écliptique.

Une analyse de l'en-tête de l'image (ce n'est pas un fichier CPA mais un fichier de type fit) montre que cette photo a été prise le 25 mars 2012, mais il manque des informations : on ne sait pas où (sur quel site et sa position sur terre) et les champs focale et diamètre du télescope sont soit faux soit non remplis. De plus, l'en-tête nous informe que l'image est en binning 1x1 avec des pixels de 18 µm, alors qu'il s'agit plutôt de binning 2x2 avec des pixels de 9 µm car il s'agit d'une image dans le rouge. Cette image a été faite avec le télescope Schulman de 0.81 mètre de diamètre ouvert à F/7 qui est dans un observatoire en Arizona, à la latitude de 32° 26' 32" Nord et la longitude 110° 47' 22" Ouest. Il ne me reste plus qu'à remplir l'en-tête avec ces informations. Si j'avais une série d'images à faire, il existe une fonction dans PRiSM qui permet de remplir les en-têtes d'image par lot (menu Fichier / Remplir l'entête de fichiers images avec...

Nous allons vérifier la FWHM des étoiles car le traitement de recherche d'étoile dans une image supporte mal les valeurs de FWHM supérieures à 5. Pour cela, pointez une étoile avec le curseur et cliquez sur le bouton droit de la souris, vous activez ainsi le menu contextuel sur l'image. Le premier choix que PRiSM propose est la fonction **Centroïde**. Une fenêtre s'ouvre avec une masse d'informations sur notre étoile : le rapport Signal/Bruit et la FWHM en Hauteur, Largueur et la Moyenne (voir figure 7).

Si vous avez des FWHM supérieures à 5 et que le traitement suivant ne fonctionne pas, faites une réduction

7. Fenêtre "Centroïde"

de vos images en Binning 2x2 "par somme" l'aide à du menu **Transformation / Binning / Réduction** et somme. La taille de vos images est réduite par deux mais la FWHM est fortement améliorée. Pour de l'astrométrie avec la taille de nos capteurs, ceci n'est pas trop gênant. Passons à la réduction de notre image. Allez dans le menu Analyse / **Etalonnage Automatique.**

Si votre en-tête d'image est valide comme nous l'avons vu en amont, la position du centre de l'image, la focale et la taille des pixels sont automatiquement correctement remplis (voir figure 9).

Vous pouvez choisir le catalogue dans lequel PRiSM va prendre ces étoiles pour faire la réduction. Faites des essais avec les différents catalogues que vous avez chargés et paramétrés.

Etalonnage astrométrie Position centre image (approximatif) Alpha : 11h05m48s -00°01'49" Delta : Focale du telescope (mm) : 5670.0 Taille des pixels en Y (µm) 18.00 Taille des pixels en X (µm) 18.00 Catalogue de référence USNO A2 ¥ Nbre max, d'étoiles de comparaison Catalogue de référence 200 Dans l'image 200 Si la calibration echoue, tenter d'augmenter le nombre d'etoiles de l'image et du catalogue Niveau des messages de debug : 4 Redefinir les niveau de messages Réglage de la reconnaissance auto Image orientée Nord/Sud Angle (approx) * 0.0 Voir état du calcul MAJ param, défauts entête camera 0K Annuler

8. Fenêtre "Etalonnage astrométrie"

Attention, il faut quand même un catalogue assez complet pour trouver un nombre d'étoiles suffisant pour que l'algorithme fonctionne. Dans les deux champs suivants, vous réglez le nombre d'étoiles dans le catalogue et dans l'image (par défaut, il est réglé sur 60). On peut augmenter le nombre d'étoiles si le processus vous le demande.

Ne cochez pas l'orientation Nord/Sud si vous n'avez pas orienté votre caméra en Nord/Sud sur votre porte oculaire. Validez en cliquant sur le bouton **OK**.

Une fenêtre de calcul s'ouvre et le processus commence, ceci est assez rapide et s'il y a un problème, PRiSM affiche un message pour que vous puissiez refaire vos réglages. Si vous avez suivi l'ensemble des recommandations de l'article, la fenêtre **Calcul des polynômes de passage** s'ouvre (voir figure 9).

Regardez le détail du calcul dans la fenêtre **Information de calcul**, les opérations que PRISM réalise sont détaillées, ceci permet de comprendre comment PRISM travaille et l'intérêt de tous les paramètres que nous avons réglés ensemble.

Il ne reste plus grand-chose à faire, par défaut, le **Degré du polynôme de passage** est sur 1, cliquer sur le bouton **Calcul**. Un polynôme est une fonction

9. Fenêtre de calcul des polynômes de passage

mathématique simple de la forme :

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

où n est le degré du polynôme. Plus n est grand plus la fonction est précise. Pour faire simple, cette fonction permet le passage des coordonnées de l'étoile du catalogue que l'on a choisi vers la position X et Y des étoiles de notre image, en déformant l'image. Augmentez la valeur du Degré du polynôme de passage, on voit le canevas de l'image se déformer, les étoiles en vert sont bonnes, les étoiles en rouge sont exclues du calcul. Ne pas prendre 1 pour le degré du polynôme, mais 2 ou 3, pas plus, car on déforme beaucoup l'image et de nombreuses étoiles sont alors exclues du calcul. Quand le réglage est bon, faire un dernier calcul et finir en cliquant sur le Bouton OK.

Notre image est réduite astrométriquement et les étoiles qui ont servi au calcul sont marquées en vert avec leurs écarts en seconde d'arc (voir figure 10). Les étoiles exclues sont en rouge sur l'image. Quand on déplace le curseur sur l'image, dans la barre d'état de PRISM, il y la position du curseur en X et Y mais aussi en Ascension Droite et Déclinaison.

Une des premières applications quand notre image est réduite est d'afficher les astéroïdes connus dans l'image à l'aide du menu Analyse / Montrer les astéroïdes. Après un calcul assez long les astéroïdes de la base de données (que vous avez mis à jour en début d'article) s'affichent en rouge avec leur nom et leur magnitude.

Si vous zoomez sur l'image vous verrez l'astéroïde concerné (sur l'image de la figure 11, c'est l'astéroïde 1999EH15 de magnitude 19.8)

Un joli caillou de 1 à 3 km à 1.8 unités astronomiques de la terre.

Il est possible maintenant d'inclure notre image dans la carte du ciel. Pour cela activez votre carte du ciel, et dessus cliquez sur le bouton droit de la souris pour ouvrir le menu contextuel, choisir « Inclure une image CCD dans la carte du ciel », une fenêtre vous permet de choisir quelle image inclure (si vous avez plusieurs images ouvertes, PRISM ne vous propose que les images réduites).

Pour retrouver rapidement votre image dans la carte du ciel, utiliser la une animation (de la carte du ciel) la fonction du menu contextuel Mettre

Résultat de l'image après sa réduction astrométrique

11. L'astéroïde 1999EH15 de magnitude 19.8

une image CCD (voir figure 12). On dans notre image. Attention à bien peut afficher les astéroïdes de la carte mettre la carte au lieu d'observation du ciel (voir en début d'article) et faire et à la bonne heure. Pour cela il existe

fonction Centrer la carte du ciel sur pour voir les astéroïdes qui passeront

12. L'image de NGC3521, centrée sur la Carte du Ciel après sa réduction astrométrique

la carte à la date d'une image CCD.

Maintenant, vous avez tous les outils et méthodes pour pouvoir faire des mesures astrométriques sur vos images et projeter sur une carte du ciel vos observations à quelques dixièmes de secondes d'arc près. Les applications sont importantes en astronomie même en tant qu'amateur. Cela passe par la préparation de vos observations, préparation et reprise de vos cadrages, recherche d'objets très faibles ou d'étoiles spécifiques dans un champ comme les exoplanètes ou la recherche de comètes ou astéroïdes. Nous verrons dans un prochain article la recherche d'astéroïdes avec les outils et les scripts de PRiSM. De tout temps, les astronomes ont cherché à se repérer le plus précisément possible dans le ciel, encore de nos jours c'est un sujet d'actualité avec le satellite GAIA de l'ESA.

✓ Sur le net

Le projet de la Carte du Ciel : http://fr.wikipedia.org/wiki/Carte_du_Ciel La mission spatiale Gaia : http://wwwhip.obspm.fr/~arenou/Wiki/Satellite_Gaia.html Aide en ligne de PRiSM : http://www.prism-astro.com/fr/aide/index.html Forums de discussion de PRiSM : http://www.prism-astro.com/forum

L'auteur

Olivier Bautista (Astro-Images-Processing)

J'ai commencé l'astronomie à 12 ans. Dans le même club astronomie depuis 22 ans (section astronomie FLEP en Dordogne),j'en suis le

responsable depuis quelques années. Je suis impliqué dans les associations AIP et T60, cette dernière gère un télescope de 60cm à l'observatoire du Pic du Midi. Je monte régulièrement pour la maintenance informatique ou l'optimisation des moteurs sur cet outil de rêve. J'essaye de ne pas me spécialiser dans tel ou tel secteur de l'astronomie. Je suis plus doué dans la réalisation et le traitement d'images « scientifiques » (astrométrie, recherche d'astéroïde, photométrie et spectrométrie), mais j'aime bien aussi faire de "belles images" même si cela est parfois plus complexe que l'imagerie scientifique.